
TCOPS7
THE ANALYTIC SCIENCES CORPORATION

/(0 TR-9033-3

TASK ORDER 33

-N SOFTWARE MEASUREMENT
PROCESSN

SSSoftware Measurement Plan T IC0
SS Technical Report 7L rOTE

01 lJuly 1989 SEP 20 1989 I
Prepared for:

STRATEGIC DEFENSE INITIATIVE ORGANIZATION
Office of the Secretary of Defense
Washington, D.C. 20301-7100

Prepared under:

Contract No. SDIO84-88-C-0018

Approved jot public releoel Prepared By:
D nz Unfi rted A

SPARTA, Inc.
Teledyne Brown Engineering

The Analytic Sciences Corporation

THE ANALYTIC SCIENCES CORPORATION
1700 North Moore Street

Suite 1800
Arlington, VA 22209

TASC AR

0" C7Df

SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OM8No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLA qR TFT)
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-9033-3

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Analytic Sciences (If applicable) Strategic Defense Initiative Organization
Corporation (Prime Contractor) Strategic efense Intiative Oganizatio

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1700 N. Moore Street Room IE149
Suite 1800 The Pentagon
Arlington, VA 22209 Washington, D.C. 20301-7100

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic (If applicable)

Defense Initiative Organization I _I

& ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 1E149 PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. NO. NO ACCESSION NO.

Washington, D.C. 20301-7100
11. TITLE (Include Security Classification)

SDS Software Measurement Plan (U)
12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, D7y) 115 PAGE COUNT
Technical FROM 5Dec88 TO 14Jul89 1989, July, 14 67
16. SUPPLEMENTARY NOTATION TASC Report No. TR-9033-j

Prepared by SPARTA, Inc, Teledyne Brown Engineering, and The Analytic Sciences Corporation

17. COSATI CODES I. SUBJECT TERMS (Continue on reverse if necessari and identify by block number)
FIELD GROUP SUB-GROUP SDS SOFTWARE, EVALUATION, MEASUREMENT PROCESS, METRICS,

MEASUREMENT PLAN

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report presents a plan for the introduction of software measurement into the SDS
development program. This plan was developed based on an evaluation of SDS Software
measurement requirements, and an assessment on software measurement processes and availability
of measurement support tools. The plan focuses on both near term and longer term tasks
necessary to initiate and maintain a viable software measurement program for the SDS. Near
term tasks are oriented toward review, assimilation, and refinement of a proposed SDS
Software Measurement approach, and use of existing software metrics tools. Longer term tasks
target modeling of software devel-opment life cycles and definition of additional metrics
development, validation, and automated implementation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UKX50= . 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. O LEIVIDUAL 22b TLEPHONE (include Area Code) 22c. OFFICE SYMBOL
. ;* "If"Z&Z 203-1600 1SII/N

DO Form 1473, JUN 86 Pr-, -t' adcions- robsolete. SECURITY CLASSIFICATION OF THIS PAGE

89 9 20 -098 UNCLASSIFIED

THE ANALYTIC SCIENCES CORPORATION

3 TABLE OF CONTENTS

3 Page

LIST OF FIGURES AND TABLES iv

I EXECUTIVE SUMMARY ES- I

0. INTRODUCTION 0-1

1. SDS SOFTWARE MEASUREMENT GOALS/OBJECTIVES 1-1

2. SDS SOFTWARE MEASUREMENT NEAR-TERM APPROACH 2-1
2.1 Summary of TR-9033-1 and TR-9033-2 2-1

2.1.1 Summary of SDS S,)ftware Measurement Requirements 2-1
(TR-9033-1)

2.1.2 Summary of Recommended Models and Metrics for SDS 2-6
Software Measurement (TR-9033-2)

2.1.3 Summary of Recommended Tools for SDS Software 2-17
Measurements

2.2 Review of Findings and Recommendations 2-21
2.3 Definition and Development of Measurement System 2-24
2.4 Selection of Pilot Contracts 2-25
2.5 Experimentation and Feedback 2-26

3. SDS SOFTWARE MEASUREMENT FUTURE APPROACH 3-1
3.1 Software Models and Metrics Development 3-1

3.1.1 Evolutionary Development 3-1
3.1.2 Short-Range Activities 3-2
3.1.3 Long-Range Development 3-7

3.2 Validation of Additional Models and Metrics 3-11
3.2.1 Validation Methodology 3-11
3.2.2 SDS Software Data and Selected Test Data 3-12
3.2.3 Validation Tool Set 3-12

3.3 Comprehensive Measurement Methodology Development and 3-13
Integration

3.4 Definition and Development of Automated Tools and Databases 3-15
3.4.1 Tool Acquisitions and Installations 3-17
3.4.2 Tool Prototype Use and Evaluation 3-17
3.4.3 Tool Interface and Database Analysis 3-18
3.4.4 Environment, Procedures and Shell Maintenance or 3-18

Specification
3.4.5 Procedures Development 3-18
3.4.6 Shel Command Files Development and Test 3-19
3.4.7 Utility Development and Test 3-19
3.4.8 User Environment Testing and Acceptance 3-19

i i

I I A

I
THE ANALYTIC SCIENCES CORPORATIONI

3 TABLE OF CONTENTS (Continued)

I REFERENCES Ref- I

REF. 1 ALPHABETICAL DOCUMENT INDEX Ref- I

3 REF.2 CATEGORY INDICES Ref- 10

I

I

I Accesrori For
NTIS CRA&I
Df-C 7A8 0

Urannounctd
Justification

I
Dist,ibutionI

3 Availability Codes

Avid axidlor
Dist Special

I

IT
1 -, '_s_ WTAI

, U

THE ANALYTIC SCIENCES CORPORATIONI

n LIST OF FIGURES

Figure Page

2.1-1 Software Acquisition Quality Metric Functions 2-3

2.1-2 SDS Software Application Domains and Quality Factors 2-5

5 3.1-1 Short- and Long-Range Activities 3-3

3.1-2 Short-Range Activities 3-4

3.1-3 Pilot Requirements Model 3-7

3.1-4 Life Cycle Meta-Model 3-10

i 3.4-1 Software Measurement/Environment Tool Development Activities 3-16

I

LIST OF TABLES

I Table Page

2.1.2-1 AFSCP 800-43 Software Management Indicators 2-8

2.1.2-2 AFSCP 800-14 Software Quality Indicators 2-12

5 3.1-1 Preliminary Requirements and Early SDLC Measurands 3-5

I
I
I
I

SC PARTA

5A v

I iv RAE Sr IUMn t,, t

,i~~~~rr To WOu mmn NH

THE ANALYTIC SCIENCES CORPORATIONI'

I1 EXECUTIVE SUMMARY

I PURPOSE AND SCOPE

The work presented in this report was performed under Subtask 4 of Task Order 33 of

the SDIO Systems SETA contract. The purpose of the subtask was to develop a plan for the

introduction of software measurement into the SDS development program. Sparta was the

technical lead on the subtask, with support from Teledyne Brown and TASC.

I The subtask was broken into two phases. The first phase focused on a review of the
results of Subtasks 1, 2, and 3, which presented SDS Software Measurement requirement,
models, and tools, and near term efforts to advance SDS Software Measurement plans. The

second phase focused on the definition of activities that provide for a stronger foundation for the

program in the longer term, with an emphasis on model development.

I REVIEW OF REQUIREMENTS, METRICS, TOOLS

The primary purpose of software metrics is to predict, throughout the software

development phase, what the quality and overall schedule and cost of the final product will be.
This prediction process is to be integrated with the standard review and audit activities of existing

I software development methodologies for the SDS. As a basis for quality prediction, nine quality
factors were defined. Lines of code, or function points, were the primary basis for productivity
predictions. The SDS software was decomposed into 36 different software application domains,

in order to produce more homogeneous groupings for prediction purposes. A framework
methodology requirement was defined, consisting of specification, estimation, evaluation, and

tuning phases.

The collection of software metrics available for use proved, as was expected, to be
concentrated late in the software development life cycle, often with no formal foundations.

Productivity models and supporting tools are more mature than quality-oriented models and tools;
COCOMO and its variations are in widespread use. While not being oriented toward prediction,

the software quality and management indicators standardized by the Army and Air Force can assist

in providing early and consistent software productivity and quality statistics. A movement toward

ES-I , A

. am*"= 70 ow

THE ANALYTIC SCIENCES CORPORATION

I a multi-a'tribute vector representation of quality factors is identified. Specific tools packages which

are applicable to SDS needs are "SMART" (Software Management and Reporting Tool) and

I "SMERFS" (Statistical Modeling and Estimation of Reliability Functions for Software).

I NEAR TERM ACTIVITIES

To support the introduction of software measurement into SDS software development, a

review of the conclusions and proposals presented in TR-9033-1 and TR-9033-2 is proposed. A

series of briefings, with audience feedback, is defined to present the SDS Software Measurement

materials to major SDS contractors and associated Government personnel. The intent is both to

educate the audience on SDIO plans in this area, and to profit from their evaluations of the SDS
Software Measurement approach, based on their unique experiences and knowledge.

Based on the set of candidate software metrics models and tools previously identified, an
initial measurement system should be developed for SDS. The system would be used to perform

initial experiments in software characteristics prediction, with a small number of software

development efforts. Cost, schedule, and reliability predictions would the the focus of initial

experiments with the system.

LONGER TERM ACTIVITIES

Using the initial SDS Software Measurement System for experiments to gain experience

is a necessary precursor to future SDS Software Measurement activities. From the results of the

experiments, and the already recognized software metrics areas of deficiencies, requirements

would be identified for the next phase of development. These requirements would include models

for reliability, integrity, portability, usability, and reusability. One promising area of development

appears to be in multi-variate vector metrics, a- it has been successfully applied to the field of

general systems optimization modelling.

I
I

. . . . AS - I

I
THE ANALYTIC SCIENCES CORPORATION

SIl In addition, the measurement methodology itself would be more completely defined.

This definition would include definition of SDS software development methodology to include

prototyping methodology. The software measurement methodology would be fully integrated with

the expanded development methodology. The redefinition would also include further development3 lof the software development methodology to incorporate methodologies for rating quality, model

tuning, and metrics selection. Finally, an integrated system of automated tools would beI developed to support the entire suite of SDS Software Measurement functions.

I
I
I
I
I
I

I
U

I

ES3un ua

I I

THE ANALYTIC SCIENCES CORPORATIONI

I 0. INTRODUCTION

3 This document presents the tasks to be accomplished in order to define a program of

software measurement for SDS development, and to introduce that program into the SDS program.

5 The plan focuses on both near term and longer term tasks necessary to initiate and maintain a viable

software measurement program for the SDS. Near term tasks are oriented toward review,

assimilation, and refinement of a proposed SDS Software Measurement approach, and use of

existing software metrics tools. Longer term tasks target modelling of software development life

cycles and definition of additional metrics development, validation, and automated implementation.

Section 1 discusses the importance of software measurement in supporting SDS software5 development. Section 2 reviews the findings of TR-9033-1 (SDS Software Measurement

Requirements) and TR-9033-2 (Evaluation of Software Measurement Processes and Software3 Measurement Support). It also lists near-term activities to be undertaken to move the SDS

Software Measurement program forward. Section 3 presents longer term activities, including

additional software metrics validation and integration, and development of automated tools and

databases. Appendix A presents a multi-metric measurement model with a formal mathematical

I foundation.

I
m

TPAJWTTA S II5 0-1 Ytf ,WM SrA ThA

I
THE ANALYTIC SCIENCES CORPORATIONI

ISDS SOFTWARE MEASUREMENT
GOALS/OBJECTIVES

Software measurement is recognized as an important contributor to the successful

development of the Strategic Defense System (SDS). While the exact extent of the software

necessary to define, simulate, prototype, implement, test, deploy, and maintain the SDS is not

known, a common indicator of the scope of the effort has been the estimate of between 10 and 90

million lines of code. This is a daunting number, even to those who previously developed large£ systems.

Size is not the only challenging aspect of SDS software development. Necessarily

distributed across many years, it also will likely be accomplished by several dozens of individual

contractors and subcontractors. In addition, the SDS encompasses a broad collection of differing

functions, ranging from mundane (accounting, formatting tools, etc) to esoteric (nuclear

detonation detection/analysis, interceptor guidance, etc.). Some needs will be met by off-the-shelf

software products; others will require extended development. During the period of development.

neither development technology, system design, nor hardware base can be expected to remain
static. New technology must be planned for and accommodated within the SDS development

3 plans.

5 One other characteristic of the SDS has a major impact on software development. SDS

mission critical software must perform as designed. The consequences of SDS software failing to

perform, or performing correctly, but under the incorrect circumstances, could be catastrophic.

Thus, the criticality of the mission requires the most reliable, correct software we c'rn build. The

costs of errors in that software are grouped in two categories, then: (1) cost of failed or incorrect

mission accomplishment, and (2) cost of preventing/identifying/removing errors in the
development process. Software measurement can be used to assist in minimizing the costs

3 associated with (2) above, while vigorous testing and evaluation addresses overall cost of error

minimization.I
SDS development is expected to be phased over many years, with hundreds or thousands

of interrelated tasks to be accomplished. Software development must be accomplished in

accordance with the overall schedule. Without firm monitoring and controls on progress, software

I T

THE ANALYTIC cCIENCES CORPORATION

IU development has the potential for delaying SDS completion by perhaps years. In addition, the

costs associated with these delays could escalate to prohibitive levels.

SDS software measurement, then, has as its goal to: (a) measure the product, and

process, of SDS software development, both to predict results, and to allow feedback and control,

and (b) to achieve a superior product, on time and within budget. The key concept here is

prediction. With accurate prediction early in the software development life cycle, discrepanciesi
between expected and required results can be identified, and appropriate steps taken. Without the

prediction afforded by software measurement, problems will remain hidden longer, requiring

additional resources to resolve. Thus, software measurement is the "early warning system" in the

management of SDS software development.

TASC aA
1-2 " MT r A

IOII T D

THE ANALYTIC SCIENCES CORPORATION

2. SDS SOFTWARE MEASUREMENT
NEAR-TERNI APPROACH

This sectior discusses the near-term activities to be undertaken to introduce in a

systematic manner the software measurement process into SDS Software Development. It

summarizes the findings documented in TR-9033-1 and TR-9033-2, and proposes a method for

review of, and concurrence with those findings, by Government and other contractor personnel.

This _.ction also defines an incremental approach to software measurement introduction, using an

initial tailored software metrics program with one or more development contracts. It also includes

a recommendation for experiments.

2.1 SUMMARY OF TR-9033-1 AND TR-9033-2

This section summarizes the findings from Subtasks 1, 2, and 3 concerning measurement

requirements by software application domains, and the models, metrics, tools, and environments

that support those measurements.

2.1.1 Summary of SDS Software Measurement Requirements
(TR-9033-1)

The work presented in this report was performed under Subtask 1 of Task Order 33 of

the SDIO Systems SETA contract. The purpose of the subtask was to develop SDS software

measurement requirements by identifying the standards and attributes required for SDS software

products and the software development process.

The subtask was broken into three phases. The first phase was a review of standards and

development process relevant to SDS, as they pertained to software metrics. The second phase

was a detailed examination of SDS software characteristics, definition of software domains, and

quality and productivity measurement requirements. The third phase integrated the measurement

requirements identified previously into an approach for the application of software metrics.

TASC - :

2-1 "t ZPICSATA

COW4- TC SDCm~, t

THE ANALYTIC SCIENCES CORPORATION

Standards and Process Identification - For purposes of this document, software

measurement is defined as the act of capturing metrics and comparing them to standards. A metric

is defined as a quantitative standard of measurement used to represent and compare some software

process or product attribute. The primary objective of software metrics is to predict, throughout

the development phase of the software, what the quality and overall schedule and cost of the final

product will be. The task began with the identification of potentially relevant standards and

development guidelines. Many were found to be of too high a level for specific guidance, or had

no relevance to software metrics technology. The ones which were found to most directly address

metric requirements were:

a) SDS Software Policy and Management Directive No. 7;

b) DoD-STD-2167A, Defense Systems Software Development;

c) RADC-TR-85-37, Vols. 1, 2, and 3, Specification of the Software
Quality Attributes.

These documents formed the core of the analysis, as they most directly addressed the

development process and the associated software attributes. Integration of software metrics into

the software development process was examined, including both the waterfall development method

and the rapid prototyping development method. While metrics integration with the waterfall

development method was relatively straightforward to define (see Figure 2.1-1, Software

Acquisition Quality Metric Functions), integration with the rapid prototyping development method

(itself not well understood) was not as complete.

Products and Process Attributes - The second phase of this subtask was to define

the software quality and productivity factors relevant to SDS software. This identification spanned

the software development life cycle from requirement definition through operation and

maintenance. For the quality factors, the thirteen factors identified by RADC were examined and
.-- lyzed for applicability to SDS needs. Several were redefined or merged together, to give a new

set of nine quality factors. Productivity factors were also examined, with factors relating to

schedule, budget, and feedback for improvement. Primary sources for analysis were based on

lines of code estimates for software components, or the identification of function points. Both

quality and productivity metrics are believed to be much more accurate when applied against

subsets of "like" software (software domains). Accordingly, the SDS software functions were

categorized and decomposed into 36 SDS software application domains having disti

2-2 A" SrA ,

I
THE ANALYTIC SCIENCES CORPORATION

I -
IV

SYSTEU SOFTWARE SW REQUIREMENTS y

SOFTWARE REQUIREMENTS ANALYSIS ANALYSIS

DEVELOPMENT

CYCLE V7

N. CODING N

LOW EXISTIN

SOFTWARE
INTEGRATION

+AN TESTITNN

iACQUISITION SPECIFYING MONITORING
ANAGERI FUNCTIONS

TSPECIFYING MEASUREMENT

3 REQUIREMENTS

* IDENTIFYING QUALITY AND
PRODUCTIVITY FACTORS TO BESINCLUDED

DETERMINING REQUIRED DESIRED

I SOFWAREGOALS FOR EACH

SOFTWARE

ACQMTSELECTING APPROPRIATE METRICS

FUNCTIONS AND TOOLS

U
MONITORING

*GATHER DATA AT REVIEW POINTSI *EVALUATE DATA
COMPARE TO REQUIREMENTS

V FTRACK PROGRESS

I ECORRECTDEFICIENCIES

0389.002-002

I Figure 2.1-1 Software Acquisition Quality Metric Functions

a
DETERMIING nEUIi EODSinn l

GOALS~c FOREAC
SOFTWAR3

THE ANALYTIC SCIENCES CORPORATION

measurement requirements (Figure 2.1-2). Each domain was described through the function

implemented, its level of criticality, time constraints, location, size, risk, use, and intended life

cycle, as well as its quality attributes. This division served then as the basis for further

measurement requirements definition.

Methodology Requirements - The third phase of this subtask was to define

methodology requirements for incorporation of software measurement into the software

development methodology. The approach defined was: specification, estimation, evaluation, and

tuning. The specification phase is perhaps the most difficult, requiring negotiation among

developers, users, and contracting agencies to set specific requirements. The estimation phase

uses the appropriate metrics to obtain predicted measures of product and process. Upon delivery,

the user evaluates the actual product, and that evaluation is compared to the metrics predictions.

Finally, the metrics are adjusted as necessary to provide more accurate assessments for future

developments.

Conclusions - There were several major conclusions from this subtask. The results of

the review of available standards reveaied that formalization of the process of estimating quality by

embedding it in the development process is not well-defined. Rapid prototyping, in particular,

must be directly addressed. For the waterfall development, the incorporation process was

identified. A modified set of quality factors tailored to SDS requirements was proposed, reducing

metric application requirements while targeting specific needs. We developed a methodology for

setting quality factors based on SDS software characteristics. The SDS software was decomposed

into 36 software application domains for purposes of measurement application. The concept of

software level to determine the extent of software metrics application was described. Several

promising productivity metrics, were identified, which appear applicable to the SDS software

domains. A four phase methodology requirement of software metrics application was also

developed.

TASC
RC1

USA

2-4 T OnG. , T

" I I I ITO am

I
THE ANALYTIC SCIENCES CORPORATIONI
I QUAUTY ATTRIBUTE

RELATIVE RANKING

2.4.1 DETECT PLUMES H H H H L L L L M

2,4.2 DETECT COLD BODIES H H H H L L L L H

2.4.3 RF DETECT H H H H L M U L M

2.4.4 RESOLVEOBJECTS H H H M L L L L M

2.4.5 DISCRIMINATE H H H M L L L L M

2.4.6 ASSESS KILLS H H H M M M M L M

2-47 CORRELATE H H H H L L L IL

2.4.8 INITIATE TRACK H H H H L L L L M

2.4,9 ESTIMATE STATE H H H H L L M L M

2.4.10 PREDICT INTERCEPT & IMPACT POINTS H H H M L L L L M
2.4.11 INTERPLATFORM DATA COMMUNICATION H H H H L L L M H

2.4.12 GROUND-SPACE COMMUNICATION H H H M L M M LI M

2 411 GROUND COMMUNICATION M M M M M H M H L

2.4.14 ASSESS THREAT H H H L L L L L L

2.4.15 ASSESS SDS H H H L L L L L L

2.4.16 ASSIGN & CONTROL SBI WEAPONS H H H H L L L L M

2.4.17 ASSIGN & CONTROL GBI WEAPONS H H H M LL HL L M

2.A.18 GUIDE & CONTROL ,,BI WEAPONS Hff 71 H H L L L L H

2.4.19 GUIDE & CONTROL GBI WEAPONS H H H M L H L L M

2.4.20 COMMAND ENVIRONMENT CONTROL H M H M M H M L M

2.4.21 CONTROL ONBOARD ENVIRONMENT H H H H L L L L M

2.4.22 COMMAND ATTITUDE & POSIION CONTROL M H M M H M L M

2.4.23 CONTROL ONBOARD ATITUDE & POSITION H H H H L L L M U

2-424 SENSE ONBOARD STATUS H H H M L L L L M

2.4.25 ASSESS STATUS H M H M M H M L M

2.4.26 COMMAND RECONFIGURATION H M H M M H M L M

2.4.27 RECONFIGURE H H H H L L L L M

2.4.28 DEVELOPMENT TOOLS M M M L I M M M M

2.4.29 HWIL SIMULATOR M H H M M M L L M

2.4.30 DEMONSTRATION SIMULATIONS M H M M M M M L M

2.4.31 SUPPORT DEVELOPMENT TEST M M M M H H H H M

2.4.32 PROVIDE DEVELOPMENT ENVIRONMENT H M H M H M L L M

2.4.33 SUPPORT FACTORY TEST M M M L H H H H L

2.4.34 SUPPORT ACCEPTANCE TEST M M M M L U I L M

2.4.35 MAINTAIN & CONTROL MGMT INFO DATABASE M M H M H H H H M

2.4.36 MANAGEMENT INFORMATION TRACKING M L H L H H H H M

03891002-001

Figure 2.1-2 SDS Software Application Domains and Quality Factors

SPARTAr

*2-5 " n T r LI\JAT TO , Si

THE ANALYTIC SCIENCES CORPORATIONI

I Open Issues - One major open issue is the establishment of procedures for audit and

review activities for the rapid prototype development process. After that is complete, then software

metrics application can be integrated with it. A formal methodology for rating quality must be

developed. Without that, unstable metrics models can result. Also, a formal methodology to

I "tune" metrics models must be defined. This includes developing formal quality rating criteria, as

well as guidelines for modifying scores. Without this definition, attempts to "trade off' one quality

factor against another are not likely to provide the desired results. Finally, software reuse must be

aggressively encouraged. Software metrics can provide estimates of software reusabitity, which

can be compared with actual reuse, providing a measure of one of the most promising sources of

cost/schedule reduction.

2.1.2 Summary of Recommended Models and Metrics for SDS
Software Measurement (TR-9033-2)

U The collection of metrics data identified in Subtask 2, TR-9033-2, proved to be both

skewed and elusive. Skewed in the sense that much of the existing metrics information that is

3 found to exist and is formalized via models and mathematical relationships is encountered late in

the life cycle (i.e., occurring in the implementation phase and beyond). Elusive due to the fact that

3 early life cycle (predictive) metrics are virtually non-existent, and when identified, have no formal

foundations (mathematical or relational) to support them for the most part. Furthermore,

3 consensus is still evolving on the valid scopes of specific metrics applications (e.g., complexity).

The metrics which have been standardized by the Air Force and Army for use throughout

the life cycle are a set of primitive indicators and weighted summations for quality and

management control and accounting rather than predictions. Also, productivity models have been3 in wide use, with quite a rich experience base as to fire-tuning parameters; the second generation;

of the Constructive Cost Model "COCOMO" has active user groups. However, one message

3 which should be clear out of this study: each program management shop should establish and

implement its own metrics methods and quality management program and develop its own

expertise with its software measurements and data.

Though there has been no early life cycle predictive model identified, the use of the

AFSCP-800-43, -14 indicators will provide early and consistent software productivity and quality

statistics. When advanced metrics development proceeds newer models can be introduced with anTSPAT

2-6 re ,,- ,, , =- -UONMTO&.

THE ANALYTIC SCIENCES CORPORATION

established SDS software measurement database for subsequent validation. Also in the absence of

an algorithmic, predictive model, a multi-attribute, composite or vector metric representation5 presents a practical approach to communicate and scale an assortment of primitive indicators. This

use of multi-attribute modelling ("fuzzy" and simple) has been recently added to the statistics and

O-R literature and is the subject of the 1990 International Conference on Metrics being held in the

United States for the first time in several years.

il Software Quality and Management Indicators - The review of the metrics

contained in Subtask 2 reveals that no single metric is capable of supporting decisions across an

entire software domain as defined in Subtask 1, TR-9033-1. Each metric supports measurements

in one or two software attributes; e.g., Reliability, Maintainability, etc. The implication here, is

3 that perhaps several metrics will need to be combined to form a composite model capable of

supporting decisions on the 36 SDS subfunctions or the defined software domains. The analysis

concludes that no available metric should be dropped from consideration.

The early use of the Air Force Standard Quality and Management Indicators are

recommended. With the advent of the Software Management and Reporting Tool "SMART", the

collection and management of the indicators will be much more efficient and flexible. Synopses of

the Management and Quality Indicators are presented in Table 2.1.2-1 and 2.1.2-2.

Composite Metrics and Early SDLC Phase Models - TR-9033-2 also proposed

the creation of a vector which could be used to assess the relative strength or weakness of a metric

when it is applied to one of the 36 SDS subfunctions. The analysis concluded that many of the

relative software attributes are not address by any of the available metric models. However, it was

noted that current research is being conducted at several universities, in industry and in

government. The need to address the measurement of software attributes, early in the software

development process, is well known. Several approaches were evaluated during the performance

of Subtask 2. A more recent approach is the use of an emerging class of metrics designated as

multi-attributes or multi-criteria metrics. Work on this type of metric is currently on-going at

3universities, some as close as George Mason University in Fairfax, Virginia.

I rATCFrA
BPJ"

DSA

2-7 f ,nw , %"am | € wCrrl 'tot "r

THE ANALYTIC SCIENCES CORPORATION

Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

1. Computer Resource Utilization (CRU) Indicator:

1.A Metrics Used:

- Planned deliverable resource (Memory, CPU, I/0).

- Minimum (Proposed to be delivered) deliverable resource.

- Actual utilization.

L.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

1.C SDLC:

- Requirements definition phase.

2. Software Development Manpower Indicator:

2.A Metrics Used:

- Planned and actual staff deviation.

- Staff losses.

2.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

2.C SDLC:

- All phases.

3. Requirements Definition & Stability Indicator:

3.A Metrics Used:

- Total number of software requirements.

- Number of untraceable s/w requirements.

- Number of untestable s/w requirements.

• PAIA

2-8 r S.. ,I

THE ANALYTIC SCIENCES CORPORATIONI

3 Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

3.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

3.C SDLC:3 - Phases : requirements definition, design, test and reviews (i.e. 11R, SRR,

SDR).

4. Software Progress-Development and Test Indicator:

4.A Metrics Used:

For the development progress portion

- CSCI design completion

=(units 100% designed/total units pers CS CI)X 100

- CSCI unit test completion

=(units 100% coded & tested/total units per CSCI)X 100

- CSCI integration completion3 =(units 100% integrated into a CSCI/total units per CS C)X 100

For the testing progress portion

- s/w test successfully completed.
- Problem reports opened.
- Problem reports closed.

4.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

S- Product division.

4.C SDLC:

5 - Design, code, and test phases.

I8 FAl I

2-9 GAWSAT4

THE ANALYTIC SCIENCES CORPORATION

Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

5. Cost/Schedule Deviations Indicator:

5.A Metrics Used:

- Cost variance=BCWP-ACWP.

- Schedule variance=BCWP - BCWS.

S- Cost performance Index(CPI)=BCWP/ACWP.
- Schedule performance index(SPI)=BCWP/BCWS.

- Estimate at completion(EAC)

=ACWP + (BAC-BCWP)/(0.2SPI + 0.8CPI).

- Variance at completion(VAC)=EAC - BAC.

- Percent completed=BCWP CUM/BAC.

5.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

5.C SDLC:

- Reviews at all phases.

6. Software Development Tools Indicator:
I 6.A Metrics Used:

Number of months available from when the tools are required to when the

tools are expected to be delivered.

6.B Users:

- Development contractors.

- Software engineers

- Software development project officers.

- Program chief engineers

- Program managers.

- Product division.

7NJI

2-10 #M. . .. TA I

............. WAT TO n/ I n l I n i

I

THE ANALYTIC SCIENCES CORPORATION

Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

6.C SDLC:
- Probably during design, code, and test phases.

,A AIpd ' I

IIR

US

2-1T Nt lk? .S A TL .
co"er- TO SDIO

I
THE ANALYTIC SCIENCES CORPORATIONI

3 Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

3 1. Completeness Indicator:

L.A Metrics Used:

- Weighted sum of components defined by SDLC milestone delivery schedule

checklists

1.B Users:

- Development contractor's software engineering, test, and quality organization.

- Software development project officers.

S- Program managers.

- Product division.

3 1.C SDLC:

- During dem/val SRR, test phases.

2. Design Structure:

2.A Metrics Used:

Design Structure= w D

Where, w = weight associated with each component (0-1).3 D = Components defined as boolean or scored

rating of structuring policy implementation.32. B Users:
- Development contractor's software engineering and test organizations.

- Software development project officers.

- Program managers.

- Product division.

2.C SDLC:

i FSD (PDR, CDR) and testing phases.

I

TAS CI "

2-12 7 W A TLAM

=....=.,,i~~~~~~~ S,, iD* l llllllIll

THE ANALYTIC SCIENCES CORPORATIONI

I Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

(Continued)

3. Defect Density Indicator:

3.A Metrics Used:

- (Cumulative defects encountered)/(total number of units per CSCI).
- (Cumulative defects corrected)/(total number of units per CSCI)

3.B Users:
- Development contractor's software engineering, test and quality organizations.

I Software development project officers.

- Program managers.

S- Product division.

3.C SDLC:
I FSD (PDR), and testing phases.

4. Fault Density Indicator:

4.A Metrics Used:

- Cumulative faults (causes of failures) / total number of units per CSCI.

- Cumulative faults corrected / total number of units per CSCI.
4.B Users:3 - Development contractor's coftware engineering, test, and quality organizations.

- Software development proiect officers.
S- Program managers.

- Personnel performing govemment acceptance of the CSCI.

- Product division.

4.C SDLC:
- FSD (CDR), acceptance testing phases.

5. Test Coverage Indicator:

5.A Metrics Used:
- (No. of implemented capabilities tested)/(total required capabilities)X 100%3 - (Software structure tested)/(total software structure)XIO0%

I TASO Ajs112-13IOV- C%

I
THE ANALYTIC SCIENCES CORPORATIONI

Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

(Continued)

5.B Users:

- Development contractor's software engineering, test, and quality organizations.

- Government acceptance personnel.

- Software development project officers.

- Program managers.

- Product division

5.C SDLC:

- Functional and requirements testing phases.

6. Test Sufficiency Indicator

6.A Metrics Used:

- Remaining faults(FR)=(PF - FP)X(UI/UT)

- Maximum tolerance(MAXT)=co (FR)

- Minimum tolerance(MINT)=c o (FR)

Where: 1'F=number of faults predicted.

FP=number of faults detected before s/w integration testing.

UI=number of units integrated.

3 UT=number of units in the CSCI.

FD=number of faults detected to date during test.

B U co, co are maximum and minimum tolerance coefficients

6.B Users:

- Development contractor's software engineering, test, and quality organizations.

- Government product acceptance personnel.

- Software development project officers.

S- Program managers.

- Product division

6.C SDLC:

- s/w integration testing phase.I

TAS4 "R, "l

2-14 I MGA" ,n-,WA TL

• . WA i ITO $DO

THE ANALYTIC SCIENCES CORPORATION

Table 2.1.2-2 AFSCP 800-14 Software Qualit Indicators

(Continued)

7. Documentation Indicator:

7.A Metrics Used:

- Documentation Index(DI)

Normalized Summation of wI x D + w2 x S

where: wI and w2 are the weights associated with the assessments of the documentation

and source listings , respectively.

D is the documentation products.

S is the source listing.

7.B Users:

- Development contractor's software engineering, logistics, and quality organizations.

- Government products acceptance personnel.

- Software development staff officers.

- Logistics staff officers.

- Program managers.

- Product division.

7.C SDLC:

- s/w products acceptance phase.

TASC An,

.e~~JSA1

2-15 I nq r
COM- %DC "

I
THE ANALYTIC SCIENCES CORPORATIONI

3 It should be noted that the result obtained in calculating a multi-criteria metric (i.e., a

single scalar value) provides the same information as a single complexity metric value - of limited3 use. However, it is felt that a composite vector or multi-attribute vector would provide greater

insight into the nature of the life cycle activities when properly instrumented as a result of the

visible vector components or coefficients that are always present or absent in some cases. Such a

requirements maturity or stability vector would be of the form R = Ai+Bj+Ck,

3 where the

- i component represents a traceable requirements activity axis3 (e.g., user, system, performance, derived)

the j component represents a document maturity component axis
(e.g., needs document, draft document, final design spec, draft
final document)

and the k component represents a design review component axis
with related life cyc1" phase information (e.g., system design,
software design, test, or PDR/CDR/FDR states).

3 The attenuation or amplification of the vector components are contained in the matrix

coefficients for i, j, k; A, B, C respectively of form:

I[al I a12 ... aln]

3 [a21 a22 ... a2n]

[amlI am2 ... an]

* Requirements synthesis vectors in the early life cycle development phases prior to

developer source selection activities would be of the form:

R = Ai+Bj
or3 R=Ai

A vector result of one of the latter two types in the development phase, after contractor

selection, would be of immediate suspect and concern to a program manager since the resultant
vector should be of the form Ai+Bj+Ck.

STAART

2-16 Of W SAL

3.inn= TO mmu mi-J

THE ANALYTIC SCIENCES CORPORATIONI

I It would be obvious that a development component is missing, possibly as a result of

major problems or exceedingly high resource consumption rates.

This is one approach that appears to shed greater information on requirements stability,

than multi-criteria metrics and is in its early stages of development. Vector metrics can be plotted,

with associated derivatives, to assess work progress or instability points along a critical path.

Constant cost curves or surfaces can be generated by examining vector magnitudes to assist in the

trade-offs of resource consumption and risk. It is felt that a finer granularity can be achieved over

existing cost models with the introduction of vector metrics.

Vector metrics implementation is based on the assumption that predictive measures and

measurands can be identified instrumented and automated via a requirements tool set. One such

tool set can be identified establishing several possible implementations and a potential series of

experiments is with the use of the RVTS tool suite and the predictive measurands identified in

Table 2.1.2-1.

i 2.1.3 Summary of Recommended Tools for SDS Software
Measurements

I The following subparagraphs summarize the findings from Subtask 3 concerning the

tools and environments that support the selected measurement processes and metrics.II
Software Management and Report Tool (SMART) - The SMART package is3 targeted for deployment at the U.S. Army Communications - Electronics Command (CECOM)

July-August 1989. The first program it will be applied on is the Advanced Field Artillery Tactical

Data System (AFATDS).

The software metrics goal is to implement the Software Management and Quality

Indicators as per AFSCP-800-43 and AFSCP-800-14 in an efficient, extensible architecture. The

software metrics indicators and data management will be based on IBM PC-compatible machines

using the popular "dBase3" formats with the "Clipper" data base language system.

The list below shows some of typical project control data used by SMART to collect the

software management and quality indicators.

• PARTA

2-17 T MGMA

• • • • . . i M TOI I

I
THE ANALYTIC SCIENCES CORPORATIONI

OVERVIEW OF SMART SOFTWARE DATA COLLECTIONS

Deviations

Waivers

Software Trouble Reports

Test Incident Forms

Engineering Change Proposals

Software Improvement Reports

Software Discrepancy Reports

Computer Resource Utilization

Software Development Manpower

Requirements Definition ard Stability

Software Progress - Development and Test

Cost/Schedule Deviations

Software Development Tools

Completeness

Design Structure

Defect Density

Fault Density

Test Coverage

3 Software Maturity

Documentation

Statistical Modelling and Estimation of Reliability Functions for Software

(SMERFS) - The Farr and Smith's SMERFS package of reliability models from the Naval

Surface Warfare Center (NSWC) at Dahlgren presents a field tested, efficient tool for the SDS to

use on an interim basis. As the interim use of the SMERFS models progresses, concurrent

validations and research into highly reliable system requirement issues can be used to tune the

models' deployment and to plan for an advanced model. The aspect of applying uncertainty theory

should also be examined during this interim period, so that the potentiality of applied uncertainty

modelling can be assessed.

I
~j~ AI

* 2-.8 AAIII

THE ANALYTIC SCIENCES CORPORATIONI

I SMERFS was developed several years ago as an aid in the evaluation of software

reliability. In its original design it was targeted for mainframe and mini-computer environments.

Since then it has also been adapted to operate on micro-computers, specifically IBM-PC/XT

compatibles.

The current version of SMERFS has incorporated eight software reliability models. The

models include the following: (1) Musa's Execution Model, (2) Goel-Okumoto Non-

Homogeneous Poisson Model, (3) Adapted Goel-Okumoto Non-Homogeneous Poisson Model,

(4) Moranda's Geometric Model, (5) Schafer's Generalized Poisson Model, (6) Schneidewind's

Model, (7) Littlewood-Verrall Bayesian Model, and (8) the Brooks-Motley Model.

SMERFS contains a driver which is claimed to make it machine independent. The driver

is a subset of the American Standards Institute (ANSI) specifications for the FORTRAN 77

compiler. Several user selectable options are available within the driver and allow the system to be

configured to produce: better predictions; output plots and catalogued output files. Currently

SMERFS is operational on three main computer groups at the Naval Surface Weapons Center

(NSWC), Dahlgren, VA. The three computer groups include the CDC CYBER 170/875, the
Vaxcluster 111785, and a large number of IBM-compatible PCs. Dr. William H. Farr, of NSWC,

and Mr. Oliver D. Smith, of EG&G Washington Analytical Services Center, Inc. both claim that

transferring SMERFS to other computers should be very easily accomplished.

Besides containing operating instructions within its interactive mode, SMERFS two

additional pieces of documentation. The two supplemental reports are: (1) SMERFS Library

Access Guide (NSWC-TR-84-371, Rev. 1), and (2) SMERFS User's Guide (NSWC-TR-84-373,

Rev. 1). These two publications allow a potential user to preview the system. Examples are

provided throughout the User's Guide, allowing a potential user to acquire an overview of the

SMERFS processing. In addition, the guide also shows actual software reliability analyses

performed on the CDC CYBER 170/875.

The SMERFS systems show tremendous potential for use in the SDI environment with a

minimum of modification.

I

I 2-19 " U SE-A T,,wCONT 'TO SDO

THE ANALYTIC SCIENCES CORPORATION

ADC Packages AMS, QES, ASQS - These three programs at the Rome Air

Development Center are in different life cycle phases as described.

i Automated Measurement System (AMS) - The Automated Measurement System

(AMS) was developed by the Harris Corporation for the Rome Air Development Center to

implement the RADC Software Quality Metrics as specified in RADC-TR-85-37. The RADC-

Harris goal was to interface with prevalent coding languages (Fortran, Ada, COBOL) and

specification languages (SREM/RSL, SDDL) on a common computer system platform (DEC
VAX, VMS, CMS), written in Fortran, with off-the-shelf (OTS) software reused from prior

RADC and contractor activities.

The development was generally successful with a few significant shortfalls. Particularly,

the following partial language interpretations are reported as disappointments:

I Partial Language Support Percentages

Ada 36%
Fortran 60%

SDDL 46%

SREM/RSL 10%

Verbal reports indicate that the contractors performance testing in regard to the Ada

interface has not been satisfactorily duplicated. The final report indicates an unsatisfactory porting
to an IBM PC/AT of the AMS. Oral reports indicate that the attempt was totally unsuccessful. The

use of AMS by the SDIO for Fortran and some Ada may be helpful in a VAX environment.

I Quality Evaluation System (QES) - The RADC program titled Quality Evaluation
System (QES) is also called "son of AMS" by some RADC staff. This package will be written in
Ada to support both Ada and Fortran applications. The target date is late 1989 or early 1990.

Progress of this package should be tracked by the SDIO.

Automated Specification Quality System (ASQS) - The RADC has begun work

on an Auomated Specification Quality System (ASQS) for early SDLC phase reporting.
Development of this program should be tracked by the SDIO.

TASC
2-20 "t WAM SrA , ,,

COWrr Os

I
THE ANALYTIC SCIENCES CORPORATION

I 2.2 REVIEW OF FINDINGS AND RECOMMENDATIONS

The SDS software measurement requirements documented in TR-9033-1, and

summarized in 2. 1. 1, were developed with an eye toward refinement and expansions. Similarly,

while a vast array of information was amassed and evaluated in completing TR-9033-2, the task

was necessarily incomplete, given the resources available and the constantly changing set of new

products being developed. Therefore, a critical review of these efforts by other knowledgeable

professionals is considered not only prudent, but necessary, to achieve a consensus on the SDS

Software Measurement approach. Another purpose in having review of SDS software

measurement plans is to more closely involve affected participants in the process. Besides having

expert expe: :-nce in diverse areas, many of the reviewers will be involved in initiating the

measurement program and in operating within the requirements of that program. Thus, they will

have the opportunity not only to learn abort requirements that may be imposed upon them, but also

to shape those requirements. This can be a key factor in the early establishment and success of the

program.

IThe review process has the following steps:

a) Identify target review audiences

b) Group attendees for briefings as desired

I c) Prepare briefing material

d) Distribute review material

e) Present briefings and receive immediate feedback

f) Analyze, assimilate feedback

g) Modify SDS Software Measurement approach as necessary

I h) Prepare and distribute specific standards, policies, and plans for
implementation.

I The conclusions contained in TR-9033-1 and TR-9033-2 should be distributed to

"interested parties" in the field of SDS software development. They would include: a) the SE&I

contractor; b) Software Center personnel; c) SPO personnel; f) procurement personnel; g)

2-21 RWMSATA

IogMTO$-

I
THE ANALYTIC SCIENCES CORPORATIONI

software tools and environment developers; h) software measurement academicians; and i) others

as deemed appropriate by SDIO.

I While not all the reviewers would be interested in all aspects of the reports, the analysis

and reasoning in the technical reports would be useful in providing a good background for review.

For example, a software measurement academician would primarily be interested in the

measurement approach and metrics models; however, the identification of the 36 SDS software

application domains would be useful information to know, as domain definition is an integral part

of our approach.

The reviewers should concentrate on the following areas, with emphasis on areas that
i directly affect them:

a) The proposed software typing scheme and resultant candidate generic
software domains;

b) The relative importance of the software quality factors within each

domain;

c) The proposed baseline methodology for setting specific goals or targets
for software quality factors;

I d) The metrics models and tools designated as appropriate for each domain
and factor or attribute; and

Ie) The proposed application and feedback processes for measurement of

the SDS software.

The reviewers could potentially contribute substantially to the successful definition and
use of software measurement in SDS, given that they may have a narrower, but deeper, experience

base (e.g., the BSTS contractor, in BSTS software functions). Also, with a good understanding

of the measurement program, more volunteers for pilot experiments would be likely.

I The material to be reviewed (either existing documents or abstracts) should be distributed

to the reviewers in the near future. Concurrent with the distribution, SDS Software Measurement

briefings should be developed and given to the reviewers. This approach allows tailoring of the

material to a specific audience. For example, briefings to academicians might concentrate on the

i models chosen, while briefings to major component contractors would emphasize the development

TASC' SAR C1

A2-22 Ir 1- -W= SrA n

... -- - -- ! im~ll~lnllllln lllll nnll n i

I
THE ANALYTIC SCIENCES CORPORATIONU

I of the SDS software application domains. Tailored briefings also allow for receiving immediate

verbal feedback. Without the briefings, written feedback, possibly weeks or months later, could

be the only response.

Alternatively, if the number of briefings required to address each review group is deemed

excessive, briefings could be combined to address several, or perhaps all, reviewers at one time.

3 A simple briefing session (2-3 days) would require considerably more organization time, and

probably lead time as well, but would have the advantage of each review group hearing first hand

the comments and ideas of the other reviewers. In addition, while set up time would be increased,

the overall time to distribute material, present the briefings, and receive feedback could be less than

that necessary if multiple, targeted briefings were given. As noted above, one of the key review5 areas is the set of tools and software metrics appropriate for a project. To better acquaint the

audience with the process, a step by step presentation of setting the software measurement goals

for a project, and determining the measu m ents to be taken, should also be given. This is a

particularly recommended approach.

Following the briefing(s) and review comments assimilation, the comments should be

reviewed for possible incorporation into the SDS Software Measurement program. Software

domains should be refined in light of the then-current understanding of the systems functiol s.

Quality factor rankings should be adjusted as necessary, and the software measurement toolset

specified. The modified standards, policies, and plans should receive wide distribution, and

implementation should begin. We recognize that this is not a one-time effort; it will continue

3 throughout the development effort. However, it is necessary to assemble the program with best

and most complete information available at that time, and get it started. Otherwise, a fragmented

and partial approach, at best, is the likely alternative.

E 2.3 DEFINITION AND DEVELOPMENT OF MEASUREMENT SYSTEM

Just as it is very important to get the SDS Software Measurement Program off to an early

start, so too should the Measurement System that implements the models and software metrics of

the iF;ogram be initiated immediately. Initially, the Measurement System will be less a complete

system than a collection of selected tools as identified in Section 2.1. The emphasis is on off-the-

shelf availability, with the more mature tools given preference over beta-release products. Other

TASC' PAJTA

3 2-23 K-,,M SrA "W

THE ANALYTIC SCIENCES CORPORATIONI

m than perhaps some tailoring of the tools to the SDS Software Development environment, no

extensive development effort should be initially undertaken. Experience must be gained with the

iinitial toolset before major additional system enhancements are initiated.

Enhancements will be identified through two parallel paths. First, the gaps identified in

TR-9033-2 for tools support of quality measurements must be filled. Those cases where a metric

is identified, but no tools implements that metric, should be addressed first. Here, the

requirements are more completely specified, and near term system improvements are more readily

achievable. For those cases where a measurement requirement has been identified, but no

approach has been identified or found to be acceptable, additional research will be necessary (see

Sections 3.1 and 3.2). Priority for development of software metrics tools should be given to those3 metrics which are associated with quality factors ranked "High", "Medium", and "Low", in that

order.

The other source of system enhancement requirements is that resulting from use of the

measurement system. Following its initial definition, users of the system will identify areas of

improvement. Some expected areas would be: a) user interface; b) integration of tools; and c)

performance. Integration of the toolset and performance would be particularly critical areas for

improvement. If the tools comprising the Measurement System are not well integrated, require

duplicative data gathering, or wok at cross purposes, resources will be wasted. Of paramount

importance, if the tools themselves do not produce the results expected, they must be revised and

improved as soon as possible. Otherwise, the Measurement System's value would be

3 questionable.

As noted in TR-9033-2, most metric tools available today deal with the later parts of the

development life cycle (i.e., code). Given the emphasis on the value of predictions of SDS

software quality and process factors, automated support for evaluating activities earlier in the life

cycle is essential. Thus, while the initial focus of the Measurement System will be on the code
itself, the early enhancements should also concentrate those tools that aid in early evaluation,

controlling, and predicting of software characteristics. These early qualitative enhancements

(spanning more of the development process) may well be more valuable than quantitative

enhancements (a deeper or different view of a particular measurement).

I TAISC RC
2-24 N" S-A d

.m.,..~~~ COW,= TO mmmmmmMmm m

THE ANALYTIC SCIENCES CORPORATION

2.4 SELECTION OF PILOT CONTRACTS

Given the embryonic nature of the SDS Software Measurement Program, it should not be
imposed across all on-going and future software development efforts without initial tryouts. It is

important to gain experience with the program under controlled circumstances prior to full-scale

introductions. Volunteers should be solicited from among those participating in the Software

Measurement Program review. To gain initial experience, a few (two or three) software

development efforts should be picked for introduction of the Software Measurement Program.
These efforts should be: a) relatively small; b) well-defined; and c) of short duration. Efforts

with these characteristics should be picked to allow for rapid assessment of results, and

minimization of outside influences.

As noted in TR-9033-1, the software measurement process should be tailored to each

specific effort. Initially, the software quality specifications should be defined. This is a

cooperative effort among the developer, users, the System Program Office, and quality assurance

personnel. Out of this effort is accomplished: a) software criticality definition; b) technology risk

assessment; and c) software quality criteria and targets specification. The software product must

be assigned to the appropriate software domain, and the associated quality and productivity

requirements defined, and refined, as appropriate.

Following the definition and ranking of the quality factors, the appropriate software
metrics models and tools would be selected from the available set for application throughout the

development process. The contractor then would initiate development, integrating the selected

metrics tools and procedures with the development process. The reports and analyzes output from

the measurement system would then be reported on at the appropriate points in the review process,

allowing for continuing assessment of the software. As results become available, they could be

compared with the objectives set during development initiation. Deviations from objectives would

be noted, explained, and appropriate action taken to adjust either the objectives, the development

process, or both. This process of continuing monitoring, assessment, and adjustment would

continue through the life cycle until product delivery. At that time, direct user assessment of the

developed system would be compared to the predictors which were developed from application of

the software development process. From this comparison, the value of the software measurement

process in providing accurate predictors of software attributes would be determined.

TASC Aft,

~0SA
2-25 TttGAMSATA

I
THE ANALYTIC SCIENCES CORPORATIONI

3 It is from this initial application of the Software Measurement Program in the "real-

world" that will give SDIO the feedback necessary to determine the future course of the

3 measurement effort. If the results reasonably meet expectations, then additional contracts should

be selected for use, and the effort expanded. If, however, the results are not particularly good,

then either modifications to the Software Measurement Program must be made, and initial trials

re-executed, or the utility of the entire effort may be questioned.

I In order to provide a high degree of control and consistency of results in the initial trials,

it would be advisable to have the Software Center administer the Measurement Program. As the

probable repository of the complete set of tools and environments, they would have the expertise

and resources necessary to support the software measurement program's introduction.I
2.5 EXPERIMENTATION AND FEEDBACK

I Specific experiments to be undertaken include primarily those which address

measurement of the software development process. Prediction of size, cost, and schedule are most

readily undertaken, and would likely produce the most unambiguous results. Experiments with a

COCOMO-based system and SOFTCOST-Ada are recommended for schedule and cost.

For experiments with software quality, software reliability is the factor is best covered by

existing metrics. Experiments with SMERFS are recommended to get reliability predictions.

3 The above experiments should either be performed by the Software Center or by the

contractors selected for initial Software Measurement trials.

I
I

I

I 2-26 W "Gk.nM W

THE ANALYTIC SCIENCES CORPORATION

3. SDS SOFTWARE MEASUREMENT
FUTURE APPROACH

This section discusses activities which should be undertaken in the longer term to provide

for continued improvement in the SDS Software Measurement process. Key among these are:

a) continued development of models and metrics

b) data collection and experimentation to validate models and metrics

c) development of comprehensive measurement methodology

d) integration of measurement with the SDS software development process

e) definition and development of automated tools and databases.

3. I SOFTWARE N1ODELS AND METRICS DEVELOPMENT

There should be a two pronged evolutionary approach to develop the SDS Software

Models and Metrics consisting of the following activity groups of equal value:

a. Applying currently available models.

b. Software Metrics Requirements R&D.

3.1.1 Evolutionary Development

An evolutionary approach is typically used when the knowledge base must mature to

achieve both long-range and intermediate objectives. These objectives are:

a. To develop the SDS software metrics management and validation data
through state-of-the-art experience with off-the-shelf (OTS) package
applications.

b. To feed-forward management evaluations and validations into the future.

c. To develop advanced SDS reliability models including factors for
subprototype replacement, Ada packaging architecture and functional
criticality and tolerance.

d. To develop appropriate models for SDS Integrity, Portability, Usability
and Reusability.

TASC 1Ar,
~~DSA

3-1 1 F ok~SrA TO SD-

I
THE ANALYTIC SCIENCES CORPORATIONI

i e. To develop composite metrics with meaningful weightings and/or vector
presentation.

These objectives are approached by means of short-range and long-range activity groups
which must interrelate. The short-range activities must feed-forward experience and evaluations.

The long-range activities must provide refinements and validations to the day-to-day activities to

promote accuracy and effectiveness.

Figure 3.1-1 shows an overview of the activity groups.I
3.1.2 Short-Range Activities

The short range activities are needed to provide control and a basis for validations. As

discussed in TR-9033-1 and its related briefing, the application of the Air Force Quality and

Management Indicators appear to be a simplistic approach to tracking quality and productivity, but
will provide a controlled footing for the program. Soon with the advent of the Software

Management and Reporting Tool "SMART", the deployment and use of the indicators can be

efficiently managed.

Figure 3.1-2 summarizes the short-range activities.

Software Indicators for Preliminary Data - The early use of the software

management and quality indicators will provide a beginning for the SDS software database. The

efficient application of the Air Force pamphlets, with contractual/SOW enforcement for the data

collections will start to build the productivity and quality control data needed for early management

control. More importantly, this early step will provide a basis for the preliminary validations of
assessment models.

As experience builds, adjustments to SOWs should be planned for additional and refined

data collections.

TASC ,

3-R.. I3-2 7K V'-^TE SA EA

m~OW TT TOH ilSNnuB

THE ANALYTIC SCIENCES CORPORATION

SHORT-RANGE LONG RANGE

" Software Indicator Applica- o Full Requirements,otion Life Cycle Modeling

o Build SDS Software Database o Advanced Reliability

o Develop metrics management Modeling

o Make preliminary predic- Integrity, Portability,

tions/assessments Usability, Reusability

o Develop validation capability o R&D for Composite

o Pilot Requirements Model Metrics

Feed forward experience data

Incremental R&D results

Figure 3.1-1 Short- and Long-Range Activities

SPARTA'

ONA

3-3 "t E Z An'- Sr AL&
=M-E 0 SDC

I
THE ANALYTIC SCIENCES CORPORATION

U

I Indicator Application - Make Preliminary Predictions
Apply AFSCP-800-14,-43 Using Available Models with
Indicators SDS data and Pilot SDS-like
(with SMART) and data
Pilot Requirements ModelI

I
Build SDS

Software Database

Adjust Validation Capability Adjust3 Data Validate Preliminary Models
Collection Assessments and Define Pilot
(Metrics Predictions RequirementsU Management) Model

I Figure 3.1-2 Short-Range Activities

I Build SDS Software Database - As soon as practical, the development of an SDS

software database should be started. A good starting basis is the data tracked by the indicators

package Software Management and Reporting Tool "SMART". A preliminary checklist of

software data elements from the early phases of the SDLC is presented in Table 3.1-1.

TASC--'C

NISA

I
3-4 TW OMG 'k ; Sr T

• • I I I I I0I I

THE ANALYTIC SCIENCES CORPORATIONI
Table 3.1-1 Preliminary Requirements and Early SDLC Measurands

1 1. Requirements Maturity/Requirements Specificity

2. Level (e.g., System, Subsystem)

3. Stability/Arbitrariness

4. Increment Tools Existence

5. Functional Coupling Rating (Functions Mapped to Requirements)

6. Derived Requirements Coupling

7. Requirements Traceability Matrix (yes or no)

8. Traceability Rating (scored or descriptive)

9. Requirements Tools Deployment

10. PTRs/DTRs Opened/Closed by Period

11. User Qualification/Validation Ratings

12. Ratio of Validated Requirements to TBDs, Unknowns and

Preliminaries

13. Prototype or Production

14. IV&V Verification Ratings of Functional Definitions

15. Development, QA & IV&V Staffing Actual/Budget Ratios

16. System Spec. Maturity Score

17. ROC/SOW Mapping Scores

18. Percentage Replacement/New & Reuse/Unique

19. Development Environment Completion Rating

20. Conflicting Requirements Weighted Scoring

21. Support Requirements Maturity & Completion

22. Requirements Change Drivers

TASC R
3VILA 3-5 ""a DM M Sr A TL .

.mmmm mmml m Ia m m mm mm Im TO m

THE ANALYTIC SCIENCES CORPORATIONU

i Preliminary Predictions - In parallel with the deployment of the software quality and

management indicators and database development, the program should start the preliminary use of

available models. The early use of the Statistical Modeling of Reliability Functions for Software

(SMERFS) eight models with SDS data and with borrowed data from similar projects will provide

the type of practical experience needed for later refinements and validations. Also, the use of the

SECOMO and REVIC project schedule and cost modeling packages will provide management with

3 !pilot experience needed to develop an efficient management and control organization.

Both the cost/schedule data with COCOMO/SECOMO/REVIC and the reliability data

with the reliability models should be organized and preserved for subsequent validations and model

refinements.

Preliminary Validations and Adjustments - Based upon the developing database

of SDS software data, the preliminary predictions and assessments can be validated. This activity

of preliminary validations may have to continue using borrowed data until enough SDS data are5 collected but the "learn as you go" aspect of software metrics application must be duly considered.

Pilot Requirements Model - As a necessary aid to provide a timely foundation for

structuring early measurands from the SDS life cycle, a requirements model has been proposed.

Figure 3.1-3 presents this model.

This proposed requirements model is identified that can also serve as the front-end to

whatever life cycle model is subsequently developed consistent with Mil-Std-2167A. The

requirements model can serve to establish formal relationships between measurands and be used to3 establish formal metrics in assessing development risk, and predicting cost/schedule effectiveness.

I
£

3-6 1 ,,n , sr,,T,,

I COW7 TO SDII
I

THE ANALYTIC SCIENCES CORPORATION

9(Conceptuai) R(System Definition) R(Derived, Design)

R(Generator) RlSynthesis)

User Prototypes Formal Prototypes

R(Support, Reuse)

Figure 3.1-3 Pilot Requirements Model

3.1.3 Long-Range Development

As the experience and database with the available models and metrics matures, the

importance of advanced models with actual SDS factors and criteria grows. The activities planned

for long-range development are:

a. Full SDS Requirements Modeling

b. Advanced Reliability Modeling

c. Survivability, Integrity, Portability, Usability and Reusability Modeling

d. Composite Metrics Modeling

These activities are discussed in the following paragraphs.

TASC R

3-7 W , W iLI I

THE ANALYTIC SCIENCES CORPORATION

Full SDS Requirements Modeling - This activity will start with the pilot

requirements model and use a formal method to represent the SDS. This model should be readily

extensible into the software architecture and detail design. The model should include the attributes

presented in Table 3.1-2.

The pilot requirements model proposed (Figure 3.1-3) has a robust set of requirements

generators and the ability to serve as the front-end to diverse types of life cycle models (iterative

and non-iterative). The model allows requirements parsing to enable the proper allocation and

instrumentation of requirements for subsequent metrics measurements and assessments. Several

dozen newly identified measures and measurands (Table 3.1-1) have been identified. These are

categorized as predictive measurands and are intended to provide early visibility into requirements

synthesis, maturity and stability. The latter two are identified as predictive indicators that can serve

to establish acceptable threshclds capable of supporting design. The identification of too many

unstable and immature requirements preclude design activities, increases development risk and

creates an incomplete design envelope).

To support the model, it is also proposed that formal mathematical relationships between

model components be identified. An initial attempt at formal mathematical relationship has been

accomplished in conjunction with George Mason University.

3-8 "a#GACSATA

IO~E O91

THE ANALYTIC SCIENCES CORPORATION

Table 3.1-2 SDS Requirements Model Attributes

Multi-level Requirements Identification -- Computer-assisted requirements identification in a

separable document basis.

Iterative Requirements Accounting -- Computer-generated matching of low-to-high with high-to-

low trace completion reporting.

Incremental Baseline Reporting -- Computer-assisted baseline identification with computer-

generated baseline accounting.

Full Real-Time, Data Driven Requirements -- Computer-assisted definition of all required timing

constants, data paths and anticipated control paths with computer generated diagnostics and data

dictionary.

Hierarchical Decomposition of System Elements -- Computer-assisted hierarchy definition;

computer generated hierarchy reporting.

User-Efficient, Secure Storage and Retrieval -- Easy to use menus, helpful messages, meaningful

diagnostics with fully supported configuration management.

Functional Simulation/Modeling -- Through computer workstation generated database of the

system functions - computer-assisted system modeling and simulation studies.

Document Generation -- Computer workstation generation of system functional documents.

Ada Language Orientation -- Computer generated prototype code or computer-assisted integration

of design and code elements with requirements and design specifications.

Life Cycle Meta-Model - A life cycle meta-model (Figure 3.1-4) is required to

support the coupling of the requirements model with prototyping and reuse life cycles, as well as

technology or automation-based paradigms. The life cycle meta-model is proposed to illustrate a

feasible approach to support the various types of development approaches (e.g., evolutionary,

incremental, software first). The meta-model is intended to provide the framework for the

measurement of productivity, the identification of associated products relative to the measurement

of processes, and the elaboration of new design review form factors.

TASC/ AI
3-9 N Sr A n

THE ANALYTIC SCIENCES CORPORATION

I -..
Requirements Hardware

Domain Engineering
Domain__ -_

Engineering

Doinrn Post-Deployment
Domain

Softw are I____________________________
Engineering

Domain

Figure 3.1-4 Life Cycle Meta-Model

The life cycle building blocks of Figure 3.1-4 are used to map phases of one life cycle

form into another, similar to that accomplished in TR-9033-2 for different waterfall models and

variations. The model is also required to assist in the association and parsing of categorization data

of Table 1.6-6 of report TR-9033-2 across the resulting new life cycle phases.

Advanced Reliability Modeling - TR-9033-2, Paragraph 4.2 described potential5 shortfalls in available reliability models for the SDS. In particular, the lack of criticality factors and

the treatment of all defects as unpredictable were discussed. On a positive note, Paragraph 1.1.6

3 of that report relayed recent extensions to domain-based model to include the notion of error

tolerances in user service. Further development to include scored tolerance would also include

g the concept of criticality (lack of tolerance).

In a recent article, Jeanette Wing and Mark Nixon have forecast that further extensions to

the "Ina Jo" formal specification language may include properties such as "fault tolerance,

reliability, performance and real-time behavior." These extensions may be applicable for the SDS

I reliability, survivability and integrity modeling.

UUII TAS _U. A3 3-1C CARI
3-1 To FM k j S A

, O#T TO ,t o :

THE ANALYTIC SCIENCES CORPORATION

3 Another valuable extension for SDS is to add software metrics data instrumentation to a

formal design language (e.g., "IORL" from Teledyne Brown Engineering), and then use SDI3 project data (such as SIE and N-SITE) to make experimental coupling and complexity

assessments, and selected predictions. The experimental data can be used to generate preliminary

3 norms for SDS predictions and assessments.

Survivability, Integrity, Portability, Usability, Reusability Modeling -

These factors require fresh development. Each of these areas was determined to be poorly

supported by metrics without formal models, (as represented by TR-9033-2 Appendix B charts 01-

36).

5 Research into these models should be promoted as feasible with priority upon

Survivability, Integrity and Reusability.

Composite Metrics - The development of multivariate vector metrics has been applied

to the field of general systems optimization modeling.

3.2 VALIDATION OF ADDITIONAL MODELS AND METRICS

The development of new and refined models sets the basis for requirements for a5 validation testbed or suite consisting of: a) validation methodology base, b) SDS software data and

selected test data, and c) a validation tool set. The validation base should provide refinements

3 guidance to further development.

3 3.2.1 Validation Methodology

The first part of the validation suite is the methodology base. These are at least two

exemplary studies providing guidance for software reliability validations Abdel-Ghaly, Chan and

Littlewood compared the predictive quality of ten reliability models using multiple criteria (u-plot,3 y-plot, scatter plots, noise measures, and Prequential likelihood). John Bowen ran goodness-of-

fit "GOF" convergence and reasonableness tests upon the eight reliability models in the SMERFS3 package. These statistical examples should serve as starting methods for the validation

methodology.

TA S C rASC I

ZZJ~JSAI13-11A "

THE ANALYTIC SCIENCES CORPORATION

I

Prior studies of complexity models also must be considered with the SDS metrics

validation methodology. Virginia Gibson and James Senn used simple comparisons to rank six

different complexity models. John Stephen Davis and Richard J. LeBlanc conducted tests of nine

different complexity measures using three different programming environment databases. Dennis5 Kafura and Geereddy R. Reddy used simple comparisons to study seven different complexity

models.

By establishing an eclectic, extensible methodology, the cost of methodology

development can be kept low and yet the responsiveness to the validation task can be ensured.

3.2.2 SDS Software Data and Selected Test DataI
Initially the data io use for validations may be obtained from SDI rapid deployment3 experiments (e.g., SIE and N-SITE). Additional project data may be borrowed from the Rome Air

Development Center (RADC) the Joint Surveillance System (JSS), the Naval Underwater Systems

Command (NUSC) or other defense systems agencies with similar programs.

Later, as the SDS preliminary application of metrics proceeds, the database will contain

prior SDS software metrics life cycle phase data (e.g., error rates, productivity levels).

3.2.3 Validation Tool Set

Two widely used statistics packages are SPSS and SAS. Either offers a PC-based

version with interfaces to mainframe services. Alternatively, a basic spreadsheet package like

"Lotus 1-2-3" or "Excel" provides a simple tool set to make iterative comparisons of test data and

statistical derivations.

Either the statistical packages or the spreadsheet packages have graphics capabilities. The

former packages produce selected statistical functions much more effectively, but the spreadsheet3 packages can make most types of popular graphs (pie, bar, line, etc.).

rAc"ISPAR
T

A

3-12 :- I

THE ANALYTIC SCIENCES CORPORATION

3.3 COMPREHENSIVE MEASUREMENT METHODOLOGY DEVELOPMENT
AND INTEGRATION

I Section 3.0 of TR-9033-1 documents the methodology requirements for software

metrics. The initial methodology requirements presented there emphasize the need for early

introduction of softwaie measurement in the software development life cycle. Just as important,

the software measurement process should not be "tacked on" to the development methodology, but3 integrated with it. Inherent in the integration of the software measurement methodology with the

software development methodology are well-developed review poiits. With the information3 presented at these review points, not only can redirection of design be undertaken, but also

redirection to meet quality goals.

U With the above points ii mir.- the following tasks need to be completed:

a) Definition of a standard prototyping methodology for SDS software
development.

b) Integration of the standard prototyping methodology with the Software
Measurement Program.

c) Development of a standard methodology for rating quality.

d) Development of a standard software metrics model "tuning" methodology.

5 e) Development of a standard metrics selection methodology.

It is envisioned that prototyping activities (including Rapid Prototyping) will be a vitally

important component of SDS development. Today, the prototyping approach is not well supported

by standards and guidelines, as is the classic water fall development process. Standards and3 guidelines are necessary to specify the objectives of each development phase, as well as the

corresponding audit and review activities. As noted in TR-9033-1, prototyping comes in at least

5 two types: Throw-away, and Evolutionary. Both types, and intermediate variations, must be

accommodated. Specifically to be addressed is the consideration that contractors may already have

differing prototype approaches in place, and may be reluctant to change them.

As part of defining the prototyping methodology for SDS, software metrics should be

included. The integration would provide a methodology analogous to that for the waterfall model.
with software metrics auditing and review activities occurring concurrently with standard audit and3

3 -1 3 I F A S k
. TO m mm

THE ANALYTIC SCIENCES CORPORATION

review activities. One of the intriguing software metrics proposed is a metric that predicts when

prototyping will be complete, and further iterations or modifications to the prototype are no longer

necessary ot cost-effective.

Current approaches to rating the quality attributes of a software product, including those

for the rating criteria, are poorly defined. To achieve uniform ratings among different users, and to

obtain ratings which are reliable measures of the extent to which a software product meets its

quality requirements, a well-defined rating methodology is necessary. It is also required for tuning

the quality metrics, so that their predictive capabilities can be made as accurate as possible.

The validation of software metrics require that they produce outputs, or scores, which

can predict the quality rating of the final product with acceptable accuracy and consistency.

Validation of a software metric is complex, and requires tuning the model to improve its predictive

accuracy Lntil it is acceptable. This tuning process must be repeated across each individual

software domain. Because tuning could require modification of literally hundreds of different

elements, metrics, criteria, rankings, etc., possibly in combination, it cannot be accomplished by

any straightforward method. It is therefore necessary to establish a methodology for softw, arc

metrics tuning so that convergence to a stable configuration of the metrics can *. achieved as

expeditiously as possible. The methodology may be both analytical and experimental. Analytical

methods may be used for identifying strategies, based on the analysis of the correlations among the

quality factor scores, the quality ratings, the applicable metrics, and metric elements. Experimental

methods would be used to analyze the effects of the tuning strategies on a variety of software

programs within the same software domain. Selection of the tuning strategies may be based on:

a) analytical methods;

b) random searches in the metrics space;

c) past experience.

When a development effort is begun, the selection of the appropriate quality goals,

factors, rankings, and tools could be a daunting prospect. Consequently, the guidelines and

recommendations for approaches documented in TR-9033-1 need to be formalized into a system

that will aid in the selection of the proper software measurement parameters. While the system

should eventually be automated, even a manual implementation of a selection methodology would

GPASC
TASC RC13-14 M VMGJT,, S ,A,4!"r=T D

THE ANALYTIC SCIENCES CORPORATIONI

I be a significant step forward. The methodology would guide the user in first setting the

appropriate quality goals for the development. It would assist in determining the software3 domain(s) in which the development best fits. Through analysis of criticality level, and tradeoff of

related software metrics, the system would help the developer in defining a baseline set of software

3 metrics for his use. While such a system would always require final determination of the

selections based on overall considerations, such a formalized approach would remove much of the

3 guesswork from the software metrics selection.

3.4 DEFINITION AND DEVELOPMENT OF AUTOMATED TOOLS
S34 AND DATABASES

The process of tailoring the selected tool packages (SMERFS, SMART, SECOMO3 and/or REVIC) into a smoothly operated, user-friendly management environment is described in

this section.

Figure 3.4-1 presents an overview of the activities to develop (or later, enhance) the tools

3 environment.

3.4.1 Tool Acquisitions and Installations

Each of the tools must be properly acquired and insta!led. Specific setup procedures5 must be checked. Options must analyzed. Alternative installation sequences should be tested.

This step can be ad hoc based upon tool and resource availabilities.

A tentative order to bring in tools is:

5a. SMERFS

b. SECOMO or REVIC

c. SMART

5 d. AdaMat or AdaCAT

e. OthersI
TASCSAa

3-150"=T 1

THE ANALYTIC SCIENCES CORPORATIONI
SMERFS
SECOMO
REVIC TOOL ACQUISITIONS
SMART AND INSTALLATIONS
ADAMAT, ETC.
PC-DBMS
PC-SPREAD

TOOL PROTOTYPE
USE & EVALUATION

TOOL INTERFACE AND
DATA BASE ANALYSIS
(IF APPROPRIATE)

ENVIRONMENT,
PROCEDURES, SHELL
MAINTENANCE
SPECIFICATION

PROCEDURES SHELL/COMMAND
DEVELOPMENT FILES DEVELOPMENT UTILITY DEVELOP-AND TESTMETADES

USER
ENVIRONMENT
TESTING &
ACCEPTANCE

Figure 3.4-1 Software Measurement/Environment Tool Development Activities

TASC,
3-16 W W ,., A , ,

I

THE ANALYTIC SCIENCES CORPORATION

1 3.4.2 Tool Prototype Use and Evaluation

3 As each tool is successfully installed, it can then be scheduled for prototype use, data

acquisition and evaluation with sample SDS data. For some tools, e.g., SMERFS, it may be3necessary to borrow or fabricate test data. For others e.g., SECOMO/REVIC live data may be

applicable.

A preliminary use and evaluation method will be drafted for SMERFS, SECOMO/REVIC

and SMART. Later this method will be reviewed for expansion or revisions. Some preliminary

evaluation criteria include:

a. Tool input requirements availability

b. User friendliness

c. Report readability

d. Processing cycle responsiveness

e. Adequacy of data integrity controls

Based upon the specific evaluations for each tool, selected utility command files and/or

utility programs may be indicated. For example, the SMERFS package provides subroutine

interface descriptions to allow a tailored user-specific executive. Alternatively, the off-the-shelf.

Executive may only require its incorporation within a menu-based software selection package like

MicroSoft Windows or a customized menu written in Clipper, dBase Pascal or C.

3.4.3 Tool Interface and Database Analysis

For those tools requiring selected enhancements, one or more of the following may be

required:

a) Command & Parameter Analysis -- a very simplistic analysis for program
package which can be driven from a menu handler.

b) Program Interface Analysis -- a more intense analysis to build or adapt an
executive module or a low-level hardware driver to new user or hardware
demands.

TA SC
3-17 T , , L, ,

THE ANALYTIC SCIENCES CORPORATION

c) Database/File Format Analysis -- a moderate analysis to develop or
enhance data extraction services downstream of a package (e.g., SMART
to Lotus or to Excel).

3.4.4 Environment, Procedures and Shell Maintenance or SpecificationI
This activity initially may be a modest programming activity to install a menus package.

Later, when it becomes necessary to add tools or to adjust the tool selections, the changes should

be very brief to make and document.

3.4.5 Procedures Development

As each tool set is integrated into the software metrics environment, the set of user

procedures should be drafted. As each tool becomes used, the procedures should be reviewed and

3 revised if needed.

I 3.4.6 Shell Command Files Development and Test

The computer commands to provide user efficiency and smooth integration must be built

and tested by technical support staffs. The data used to test each tool should be preserved for user

tutorial sessions.I
3.4.7 Utility Development and TestI
As appropriate, utility programs should be coded in a popular language like Turbo Pascal

3 or Turbo C. Simple testing should precede complex tests.

3 3.4.8 User Environment Testing and Acceptance

After each of the models has been unit-tested with its applicable adaption data, the total

3environment must be addressed. The users will be asked to pass judgement on the smoothness of

program initiation and execution.

I
CI3 TASC"~A

£3-18ToFMGA A L.
o" f-o sm !

I
THE ANALYTIC SCIENCES CORPORATION

3 REFERENCES

REF.I

ALPHABETICAL DOCUMENT INDEX

[ABDE8609] Abdel-Ghaly, Chan & Littlewood; Evaluation of Competing Software
Reliability Predictions; IEEE Transactions, 9/86.

[ADK17704] Adkins & Pooch; Computer Simulation: A Tutorial; Computer, 4/77.

[ALBR841 11 Albrecht, A.J.; AD/M Productivity Measurement and Estimate Validation; IBM
CIS&A Guideline 313; 11/1/84.

[ALBR8311] Albrecht & Gaffney; Software Function, Source Lines of Code and
Development Effort Prediction: A Software Science Validation; IEEE3 Transactions, 11/83.

[ARMY8408] U.S. Army/Computer Systems Command; Software Quality Engineering

Handbook; Subcontract No. 7202, 8/84.
[ARNO86] Arnold, Robert S.; Tutorial: Software Restructuring; IEEE Computer Society

Pr-ss, 1986. Includes [YAU80I11, [HARR82091

I [BALZ831 11 Balzer, Cheatham & Green; Software Tecli.iology in the 1990's: Using a New
Paradigm; Computer, 11/83.

3 [BAS18311A] Basili & Hutchens; An Empirical Study of a Syntactic Complexity Family; IEEE
Transactions, 11/83.

[BAS18709] Basili & Rombach; Implementing Quantitative SQA: A Practical Model; IEEE
Transactions, 9/87.

[BASI8703] Basili & Rombach; TAME: Tailoring an Ada Measurement Environment,
Proceedings from 5th National Joint Ada Conference, 3/87.

[BASI8311B] Basili, Selby, Phillips; Metric Analysis & Data Validation Across Fortran
Projects; IEEE Transactions; 11/83.

[BEHR831I] Behrens, Charles; Measuring the Productivity of Computer Systems
Development Activities with Function Points; IEEE Transactions, 11/83.

[BEIZ84] Beizer, Boris; Software System Testing and Quality Assurance; Van Nostrand3 Reinhold Co., 1984.

[BELZ8603] Belz, Frank C.; Applying the Spiral Model: Observations on Developing
System Software in Ada; Proceedings from 4th National Ada Conference, 3/86.

[BEND8703] Bendifallah & Scacchi; Understanding Software Maintenance Work; IEEE

Transactions, 3/87.

Ref- I "s ww,, A

• I li

THE ANALYTIC SCIENCES CORPORATION

I

I [BOEH81] Boehm, Barry W.; Software Engineering Economics; Prentice-Hall, New
Jersey, 1981.

[BOEH8810] Boehm & Papaccio; Understanding and Controlling Software Costs; IEEE

Transactions, 10/88.

[BOWE8610] Bowen, John B.; Application of a Multi-Model Approach to EstimatingResidual Software Faults and Time Between Failures; Quality & Reliability
Engineering International, Vol. 3; 10/22/86.

3 [BRIT88 11 Britcher, R.N.; Using Inspections to Investigate Program Correctness;
Computer, 11/88.

[BROW84071 Browne, J.C.; Understanding Execution Behavior of Software Systems;
Computer, 7/84.

[CARD8508] Card, Page & McGarry; Criteria for Software Modularization; Proceedings
IEEE Conference on Software Engineering; 8/85. (see SEI section)

[CARD8602] Card, Church & Agresti; An Empirical Study of Software Design Practices;
IEEE Transactions; 2/86. (see SEI section)

[CARD8707] Card, McGarry & Page; Evaluating Software Engineering Technologies; IEEE3 Transactions, 7/87.

[CARD8709] Card, Cotnoir, Goorevich; Managing Software Maintenance Cost & Quality-
Proceedings IEEE Conference on Software Maintenance, 9/87. (see SEI
section)

[CARD8812] Card & Agresti; Measuring Software Design Complexity; Journal of Systems
and Software, 12/88. (see SEI section)

[CARD87] Card & Agresti; Resolving the Software Science Anomaly; Journal of Systems5 and Software, 1987. (see SEI section)

[CARD8807] Card, David; The Role of Measurement in Software Engineering; Proceedings3 2nd IEE/BCS Software Engineering Conf., 7/88. (see SEI section)

[CARR8603] Carrio, Miguel A.; The Technology Life Cycle and Ada; Proceedings from 4th
National Ada Conference, 3/86.

[CHAL87] Chalam, V.V.; Adaptive Control Systems - Techniques & Applications; Marcel
Dekker, Inc., 1987.

[CHEU8706] Cheung & Li; An Empirical Study of Software Metrics; IEEE Transactions,
6/87.

U [CHIE8607] Chien, Y-T; Expert Systems in the SDI Environment; Computer, 7/86.

IS AP'II ~TASC 'SARTa

Ref-2 W ,nw,, Sr, w

I T W|

I
THE ANALYTIC SCIENCES CORPORATIONI

[CHUB89R] Chubb, Bruce; Lessons Learned in the Setup and Management of ProductivityImprovement Methods.

[CINL75] Cinlar, Erhan; Introduction to Stochastic Processes; Prentice-Hall, Inc. 1975.

[COHE85] Cohen, Paul R.; Heuristic Reasoning about Uncertainty: An Artificial
Intelligence Approach; Pitman Publishing, Inc., 1985.

[CONT86] Conte, Dunsmore, Shen; Software Engineering Metrics & Models;
Benjamin/Cummings Publishing Co.; 1986.

I [DAVI8810] Davis, Bersoff, Comer; A Strategy for Comparing Alternative Software
Development Life Cycle Models; IEEE Transactions, 10/88.

I [DAV18809] Davis & LeBlanc; A Study of the Applicability of Complexity Measures; IEEE
Transactions, 9/88.

3 [DELO8807] DeLoach, Scott A.; An Interface-Based Ada Programming Support
Environment; ACM Press - Ada Letters; July/Aug. 1988.

[DEMU8807] Demurjian & Hsiao; Towards a Better Understanding of Data Models Through
the Multilingual Database System; IEEE Transactions, 7/88.

[DOD8807A Department of Defense; Report of the Defense Science Board Task Force on
II Military Software-9/87; ACM Press - Ada Letters; July/Aug. 1988.

[DOD8807B] Department of Defense; Ada Board Response to Report of Defense Science
Board Task Force on Military Software-2/88; ACM Press - Ada Letters;July/Aug. 1988.

[DORN75] Dorny, C. Nelson; A Vector Space Approach to Models & Optimization; John
Wiley & Sons; 1975.

[DUNS8805] Dunsmore, H.E.; Evidence Supports some Truisms, Belies Others; Quality
Time-IEEE Software, 5/88.

[ELLI88] Ellis & Wygant; A System-Oriented Methodology to Support Software
Testability; ITEA Journal, 1988.

[EVAN84] Evangelist, Michael; An Analysis of Control Flow Complexity; COMPSAC3 Proceedings, 1984.

[EVAN83] Evangelist, Michael; Software Complexity Metric Sensitivity to Program
Structuring Rules; Journal of Systems & Software; 1983.

[FARR88] Farr, Smith & Schimmelpfenneg; A PC Tool for Software Reliability
Measurement; Proceedings from Institute of Environment Sciences; 1988.

[FARR8812A] Farr & Smith; Statistical Modeling and Estimation of Reliability Functions for
Software (SMERFS) User's Guide; NSWC-TR-84-373, 12/88.

TASC
- ',I[;USA . ,

Ref-3 n "M0"T &W°A

.. .. ~~~~~~ ~ ~CWY Tm SDIO l mII~llBIllIg B

THE ANALYTIC SCIENCES CORPORATION

n [FARR8812B] Farr & Smith; Statistical Modeling and Estimation of Relability Functions for
Software (SMERFS) Library Access Guide; NSWC-TR-84-371, 12/88.

5 [FARR8309] Farr, William H.; A Survey of Software Reliability Modeling and Estimation;
NSWC-TR-82-171; 9/83.

3 [FREE87] Freeman, Peter; Tutorial: Software Reusabiity; IEEE Computer Society Press,
1987.

[GADO88] Gados, Ronald; Guidelines for Certification of Strategic Defense System
Simulation Models; 1TEA Journal, 1988.

[GELP8806] Gelperin & Hetzel; The Growth of Software Testing; Communications of the
ACM, 6/88.

[GIBS8903] Gibson & Senn; System Structure and Software Maintenance Performance;3 Communications of the ACM, 3/89.

[GOIC89RA] Goicoechea, Burden, Sanchez; Evaluation & Ranking of Alternate Systems
with Ariadne: An Application to the Economy Car Selection Problem. (see
GMU Info. section)

[GOIC8 1] Goicoechea, Hansen & Henrickson; A Hierarchical-Multilevel Approach to the
Development & Ranking of Systems in Tanning Industry; Computing &
Industrial Engineering, 1981. (see GMU Info. section)

[GOIC89RB] Goicoechea, Ambrose; Metrics and Trade-Off Analysis in Software Design,
Production, and Evaluation.

[GOIC89RC] Goicoechea, Ambrose; Software Metrics: Their Measurement and Use in
Models. (see GMU Info. section)

[HARR89RA] Harrison, Warren; Applying McCabe's Complexity Measure to Multiple-Exit
Programs. (see PSU Info. section)

[HARR8209] Harrison, Magel, Kluczny, DeKock; Applying Software Complexity Metrics to3 Program Maintenance; Computer Magazine, 9/82. (see PSU Info. section)

[HARR86] Harrison & Cook; Are Deeply Nested Conditionals Less Readable?; Journal of3 Systems and Software, 1986. (see PSU Info. section)

[HARR89RB] Harrison & Magel; A Complexity Measure Based on Nest'ng Level. (see PSU
Info. section)

[HARR88] Harrison, Warren; MAE: A Syntactic Metric Analysis Envirornent; Journal of
Systems and Software; 1988. (see PSU Info. section)

I [HARR87] Harrison & Cook; A Micro/Macro Measure of Software Complexity; Journal of
Systems and Software; 1987. (see PSU Info. section)

TAISC ?I AR I
Ref-4 r R SET u-,

.. TO= SDn m n n l l

I
THE ANALYTIC SCIENCES CORPORATIONI

I [HARR8602] Harrison & Cook; A Note on the Berry-Meekings Style Metric;
Communications of the ACM, 2/86. (see PSU Info. section)

I [HARR89RC] Harrison, Warren; Software Science and Weyuker's Fifth Property. (see PSU
Info. section)

[HARR8804] Harrison, Warren; Using Software Metrics to Allocate Testing Resources;
Journal of Management Information Systems, Spring 88. (see PSU Info.
section)

[HENR8109] Henry & Kafura; Software Structure Metrics Based on Information Flow; IEEE
Transactions, 9/81.

I [HUMP87031 Humphrey, Watts S.; Software Process Management; 9th International
Conference on Software Engineering, 3/87.

3 [IDA8804A] IDA-Deliverable to SDIO; Strategic Defense Initiative Architecture Dataflow
Modeling Technique, Version 1.5; Report # P-2035, 4/88.

[IDA8804B] IDA-Deliverable to SDIO; A Simple Example of an SADMT Architecture
Specification, Version 1.5; Report # P-2036, 4/88.

[IDA8812) IDA-Deliverable to SDIO; SDS Software Testing & Evaluation: A Review of
the State-of-the-Art in Software Testing and Evaluation; Report # P-2132,
12/88.

[JEFF8707] Jeffery, D. Ross; Time-Sensitive Cost Models in the Commercial MIS
Environment; IEEE Transactions, 7/87.

[KAFU8703] Kafura & Reddy; The Use of Software Complexity Metrics in Software
Maintenance; IEEE Transactions, 3/87.

[KAR188121 Karimi & Kuo; User Interface Design from a Real Time Perspective;
Communications of the ACM, 12/88.

[KAVI8710] Kavi, Buckles and Bhat; Isomorphisms Between Petri Nets and Dataflow
Graphs; IEEE Transactions, 10/87.

[LEAC8703] Leach, Ronald J.; Ada Software Metrics and Their Limitations; Proceedings3 from 5th National Joint Ada Conference, 3/87.

[LEE87 101 Lee, Tony; An Information-Theoretic Analysis of Relational Databases--Part I:u Data Dependencies and Information Metric; IEEE Transactions, 10/87.

[LEW88 11] Lew, Dillon & Forward; Software Complexity and its Impact on Software
Reliability; IEEE Transactions, 11/88.

[LICH8601] Lichtrnan, Zavdi; Generation and Consistency Checking of Design and Program
Structures; IEEE Transactions, 1/86.

ASPATI-..... 1s c I
Ref-5 S. A n-

-- ~~~~~~CW" TO $mmmm mmmmm m unien

I

THE ANALYTIC SCIENCES CORPORATION

I [MART8407] Martin & Brice; Effect of Hardware-Software Interaction on Performance;
Computer, 7/84.

[MCCA76121 McCabe, Thomas; A Complexity Measure; IEEE Transactions, 12/76.

[MCCL7805] McClure, Carma; A Model for Program Complexity Analysis; Proceedings
from 3rd International Conference on S/W Engineering; 5/78.

[MCKA89R] McKay, Charles; A Proposed Framework for the Tools & Rules to Support the
Life Cycle of the Space Station.

[MEND8205] Mendis, Kenneth S.; Quantifying Software Quality; Computers, 5/82.

3 [MILL7612] Mills, Harlan D.; Software Development; IEEE Transactions, 12/76.

[MUSA8903] Musa, John D.; Faults, Failures, and a Metrics Revolution; IEEE Software,
3/89.

[MUSA87] Musa, lannino, Okumoto; Software Reliability: Measurement, Prediction,
Application; McGraw-Hill, New York; 1987.

[MUSA8902] Musa, John D.; Tools for Measuring Software Reliability; IEEE Spectrum,
2/89.

[MYER861 1] Myers, W.; Can Software for the Strategic Defense Initiative Ever be Error-
Free?; Computer, 11/86.

I [NELS87] Nelson & Carroll; Tutorial: Fault-Tolerant Computing; IEEE Computer Society
Press; 1987.

3 [NEUG8510] Neugent, Gilligan, Hoffman & Ruthberg; Technology Assessment: Methods
for Measuring the Level of Computer Security; NSB Special Publication 500-
133, 10/85.

[NEUM8609I Neumann, Peter Gabriel; On Hierarchical Design of Computer Systems for

Critical Applications; IEEE Transactions, 9/86.

I [NYBE89] Nyberg, Karl; Ada: Sources & Resources 1989 Edition.

[OSTR8806] Ostrand & Balcer; The Category-Partition Method for Specifying & Generating
Functional Tests; Communications of the ACM, 6/88.

[PERK8703] Perkins & Gorzela; Experience Using an Automated Metrics Framework to
Improve the Quality of Ada Software; Proceedings from 5th National Joint Ada
Conference, 3/87.

[RAMA8808] Ramamurthy & Melton; A Synthesis of Software Science Measures and the
Cyclomatic Number; IEEE Transactions, 8/88.

TA SC' jRI~
Ref-6 =s.ATM

"--cw"MTOW

THE ANALYTIC SCIENCES CORPORATION

[RICH8808] Rich & Waters; Automatic Programming Myths and Prospects; Computer,
8/88.

3 [ROLA8606] Roland, Jon; Software Metrics; Computer Language, 6/86.

[ROMB8703] Rombach, H. Dieter; A Controlled Experiment on the Impact of Software
Structure on Maintainability; IEEE Transactions, 3/87.

[RADC8205] Rome Air Development Center; Software Testing Measures; RADC-TR-82-
135, 5/82.

I [RADC8308] Rome Air Development Center; A Guidebook for Software Reliability
Assessment; RADC-TR-83-176, 8/83.

3 [RADC8403] Rome Air Development Center; Software Test Handbook - Software Test
Guidebook; RADC-TR-84-53, Vol. II; 3/84.

[RADC85021 Rome Air Development Center; Specification of Software Quality Attributes;
RADC-TR-85-37, Vol. I, II, III; 2/85.

[RADC878A] Rome Air Development Center; Methodology for Software Reliability
Prediction and Assessment; RADC-TR-87-171, Vol. I; 8/87.

[RADC878B] Rome Air Development Center; Software Reliability Prediction and Estimation
Guidebook; RADC-TR-87-171, Vol. II; 8/87.

[SCHN8904] Schneidewind, Norman; Distributed System Software Design Paradigm with3 Application to Computer Networks; IEEE Transactions, 4/89.

[SCHN8703I Schneidewind, Norman; The State of Software Maintenance; IEEE
Transactions, 3/87.

[SCHN77041 Schneidewind, Norman; The Use of Simulation in the Evaluation of Software;
Computer, 4/77.

[SCHU8805] Schultz, Herman P.; Software Management Metrics; ESD-TR-88-001, 5/88.
[SELB8703] Selby, Richard W.; Incorporating Metrics into a Software Environment;3 Proceedings from 5th National Joint Ada Conference, 3/87.

[SHAT8808] Shatz, Sol; Towards Complexity Metrics for Ada Tasking; IEEE Transactions,
* 8/88.

[SHUM88] Shumskas, Anthony; Why Higher Reliability Software Should Result from
Reduced Test and Increased Evaluation; ITEA Journal, 1988.

[SIEG8807] Siegrist, Kyle; Reliability of Systems with Markov Transfer of Control; IEEE
Transactions, 7/88.

I [SING87] Singh, Madan; Systems & Control Encyclopedia - Theory, Technology,
Applications; Vol. 3, 6, 8; Pergamon Press; 1987.

TASC 4 AI
,1 ReARef-7 PMKi WA- TLAM ;'

.... -- m ~ mm i =m i m lm nll m l i

THE ANALYTIC SCIENCES CORPORATION

I [SLON8703] Slonaker, Smith, Prizant & Giles; Development of Multi-Tasking Software in
Ada - a Case Study; Proceedings from 5th National Joint Ada Conference,

* 3/87.

[SPAR8808] SPARTA, TBE & TASC Deliverable to SDIO; Task Order 5 BM/C3
Architectures - (Tools) Subtask 1 Architectural Representation Methodology;
Contract No. SD1084-88-C-0018, 8/15/88.

[SRIV88011 Srivastava & Farr; The Use of Software Reliability Models in the Analysis of
Operational Software System; Proceedings from the Institute of Environmental
Sciences, 1/13/88.

[STAN85] Stankovic, John A.; Reliable Distributed System Software; IEEE Computer
Society Press; 1985.

[STEL88071 Stelovsky & Sugaya; A System for Specification and Rapid Prototyping of3 Application Command Languages; IEEE Transactions, 7/88.

[TAKA8901] Takahashi & Kamayachi; An Empirical Study of a Model for Program Error
Prediction; IEEE Transactions, 1/89.

[TBE86091 Teledyne Brown Engineering Deliverable to ISEC; Generic Tools Requirements
for ISEC Ada Transition; MJ86-85-C0244, Contract No. F49642-85-C0244,
9/30/86.

[TBE8703] Teledyne Brown Engineering Deliverable to AMCCOM; Extending McCabe's
Cyclomatic Complexity Metric for Analysis of Ada Software; MC87-McCabe
11-0003, Contract No. DAAA21-85-D-0010, 3/87.

[TBE8704] Teledyne Brown Engineering Deliverable to AMCCOM; Modified A-Level
Software Design Specification for the Ada Complexity Analysis Tool Which
Automates the Extended McCabe's Cyclomatic Metric; MC87-McCabe [1-0005;
Contract # DAAA21-85-D-0010, 4/87.

[TBE87101 Teledyne Brown Engineering Deliverable to CECOM; Software Methodology
Catalog; MC87-COMM/ADP-0036, Contract No. DAAB07-86-D-ROO, 10/87.

I [TBE8808A] Teledyne Brown Engineering Deliverable to SDIO; BM/C3 Architecture Tools,
Tool Set Recommendation - TAGS and SADMT and Software Test Plan for the
SADMT-Based IORL Simulation Compiler; Contract No. SD1084-88-C-00 18,
8/19/88.

[TBE8808B] Teledyne Brown Engineering Deliverable to SDIO; Technical Report for the
Development of a IORL Software Translator to SADMT; Contract No. SDIO-
84-88-C-0018, 8/26/88.

I[TBE881 11 Teledyne Brown Engineering Deliverable to CECOM; Implementation
Guidelines for Software Management & Quality Indicators; Contract No.
DAAB07-86-D-ROO 1, Draft-9/88, Revised- 11/88.

TA S C IAM
A

Ref-8 - m s" w
I! 1 ,

THE ANALYTIC SCIENCES CORPORATION

I [TENN8809] Tenny, Ted; Program Readability: Procedures Versus Comments; IEEE
Transactions, 9/88.

I [TITA8809] Titan Systems Deliverable to SDIO; Preliminary Software Test and Evaluation
Assessment and Recommendation; 9/30/88.

[TOHM8903] Tohma, Tokunaga, Nagase & Murata; Structural Approach to the Estimation of
the Number of Residual Software Faults Based on the Hyper-Geometric
Distribution; IEEE Transactions, 3/89.

I [TRAC88] Tracz, Will; Tutorial: Software Reuse: Emerging Technology; IEEE Computer
Society Press; 1988.

[WEID8602] Weiderman, Nelson; Evaluation of Ada Environments; Report # SEI-86-MR-2,
2/5/86.

[WEIS8810] Weiss & Weyuker; An Extended Domain-Based Model of Software Reliability;
IEEE Transactions, 10/88.

[WEYU8809] Weyuker, Elaine; Evaluating Software Complexity Measures; IEEE
Transactions, 9/88.

[WEYU8806] Weyuker, Elaine; The Evaluation of Program-Based Software Test Data
Adequacy Criteria; Communications of the ACM, 6/88.

[WING 902] Wing, Jeanette & Mark Nixon; Extending Ina Jo with Temporal Logic; IEEE
Trans. on Softw. Engineering; 02/89.

[WOLF89031 Wolf, Clarke & Wileden; The AdaPIC Tool Set: Supporting Interface Control
and Analysis Throughout the Software Development Process; IEEE
Transactions, 3/89.

[WOOD79] Woodward, Hennell & Hedley; A Measure of Control Flow Complexity in
Program Text; IEEE Transactions, 1979.

[WU8703] Wu, Basili & Reed; A Structure Coverage Tool for Ada Software Systems;
Proceedings from 5th National Joint Ada Conference, 3/87.

[YAU8808] Yau, Nicholl, Tsai, Liu; An Integrated Life-Cycle Model for Software3 Maintenance; IEEE Transactions, 8/88.

[YAU8011] Yau & Collofello; Some Stability Measures for Software Maintenance; IEEE
Transactions, 11/80.

[YAU8606] Yau & Tsai; A Survey of Software Design Techniques; IEEE Transactions,
6/86.

I [YU88091 Yu, Shen, Dunsmore; An Analysis of Several Software Defect Models; IEEE
Transactions, 9/88.

TASC SA.

IRef-9 DEPMPTWSAL

THE ANALYTIC SCIENCES CORPORATION

I
REF.2 CATEGORY INDICES

i METRICS PROGRAMS

1. NUSC - Navy Submarine Combat System Applied Software Metrics Program - 3/15/89

2. IBM - Space Shuttle Programs - 7/29/88

3 USAF R&M 2000 Program - 1/1/89

i 4. NSWC - Statistical Modeling & Estimation of Reliability Functions for Software (SMERFS)
- Dahlgren, VA, 12/88

USDS POLICIES AND PROCEDURES

1. Strategic Defense System Software Policy. Draft 7/19/88

TECHNOLOGY FOR ASSESSMENT OF SOFTWARE QUALITY (TASQ)

1. Database Reports

2 AMC S/W Task Force Brief - 12/14/88

I 3. POC Cross Reference Draft Report to AMCCOM; Contract No. DAAA21-88-D-0012,
Technical Report MC89-TASQ-0003, 1/27/89

I SOFTWARE ENGINEERING INSTITUTE (SEI) (received from)

1. The Role of Measurement in Software Engineering; David Card; Proceedings 2nd IEE/BCS
Software Engineering Conf., 7/88 [CARD8807]

2. Resolving the Software Science Anomaly; Card & Agresti; Journal of Systems & Software,
1987 [CARD87]

3. Measuring Software Design Complexity; Card & Agresti; Journal of Systems & Software,
1988 [CARD88]

1 4. Managing Software Maintenance Cost & Quality; Card, Cotnoir, Goorevich; Proceedings
IEEE Conference on Software Maintenance, 9/87 [CARD8709]

3 5. An Empirical Study of Software Design Practices; Card, Church, Agresti; IEEE
Transactions; 2/86 [CARD8602I

6. Criteria for Software Modularization; Card, Page, McGarry; Proceedings IEEE Conf. on
Software Engineering; 8/85 [CARD8508]

Tat

TA SPARTA

Ref-10 M ,n, T---
3=... T WO

THE ANALYTIC SCIENCES CORPORATION

INSTITUTE FOR DEFENSE ANALYSES (IDA)

1. SDS Software Testing & Evaluation: A Review of the State-of-the-Art in Software Testing
and Evaluation; IDA Deliverable to SDIO, Report # P-2132, 12/88 [IDA8812]

2. Strategic Defense Initiative Architecture Dataflow Modeling Technique; IDA Deliverable to
SDIO, Report P-2035, 4/88 [IDA8804A]

3. A Simple Example of an SADMT Architecture Specification; IDA Deliverable to SDIO,
Report P-2036, 4/88 [IDA8804B]

I NIIL-STDS - IEEE/ANSI/ACM/IDA/Directives/(;uidelines/etc.

1. AFSCP-800-14 S/W Quality Indicators 1/20/87

2. AFSCP-800-43 S/W Management Indicators 1/31/86

3 3. IEEE Std. for Software Productivity Metrics 9/1/88

4. IEEE P1061 Std. for Software Quality Metrics, Draft 2/23/87 & 11/17/88

5. IEEE P982.1/D3.0 Std, A Standard Dictionary of Measures to Produce Reliable Software,
Draft 5/88

6. IEEE P982.2/D6, Draft Guide for the Use of Standard Dictionary of Measures to Produce
Reliable Software, 5/88

I 7. IEEE P1044/D3 Draft Standard of a Standard Classification for Software Errors, Faults &
Failures, 12/87

I 8. Orlando H, Panel V, Management Indicators and Quality Metrics, 1/30/87

9. AR 1000-1 Department of the Army, Basic Policies for Systems Acquisition, 5/1/81

10. Draft DoDD 5000.29, Management of Computer Resources in Major Defense Systems,
1/15/86

1 11. DoDD 3405.1, Computer Programming Language Policy, 4/2/87

12. DoDD 3405.2, Use of Ada in Weapon Systems, 3/30/87

13. Draft DoDD 3405.xx, Computer Software Policy, 10/29/85

3 14. MIL-STD-2167A, Defense System Software Development, 2/29/88

I

TASC PIIRef-II M*WMrT0

I
THE ANALYTIC SCIENCES CORPORATION

I
I GEORGE MASON UNIVERSITY

1. Tutorial paper: A User-Oriented Listing of Multiple Criteria Decision Methods; Despontin,
Moscarola, Spronk; Belgian Journal of Statistics

2. Metrics & Trade-Off Analysis in Software Design, Production, & Evaluation; Ambrose
Goicoechea, GMU [GOIC89RB]

3. A Hierarchical-Multilevel Approach to the Development & Ranking of Systems in Tanning
Industry; Goicoechea, Hansen & Henrickson, Computing & Industrial Engineering, 1981
[GOIC8 11

4. Evaluation & Ranking of Alternate Systems with Ariadne: An Application to the Economy
Car Selection Problem; Goicoechea, Burden, Sanchez; GMU [GOIC89RA]

5. Software Metrics: Their Measurement ind Use in Models; Ambrose Goicoechea, GMU
[GOIC89RC]

I PORTLAND STATE UNIVERSITY

1. Tool Info. (PC-Metric - Developer's Toolbox)

2. Software Science and Weyuker's Fifth Property, Warren Harrison, PSU [HARR89RC]

3. A Note on the Berry-Meekings Style Metric; Warren Harrison & Curtis Cook;
Communications of the ACM, 2/86 [HARR8602]

4. MAE: A Syntactic Metric Analysis Environment; Warren Harrison, Journal of Systems and
Software, 1988 [HARR88]

5. Applying McCabe's Complexity Measure to Multiple-Exit Programs; Harrison, PSU
[HARR89RA]

6. Using Software Metrics to Allocate Testing Resources; Harrison; Journal of Management
Information Systems, Spring 88 [HARR8804]

7. Applying Software Complexity Metrics to Program Maintenance; Harrison, Magel, Kluczny,
DeKock; Computer Magazine, 9/82 [HARR8209]

8. A Complexity Measure Based on Nesting Level; Harrison & Magel; Univ. of Mo.
[HARR89RB]

9. Are Deeply Nested Conditionals Less Readable?; Harrison & Cook; Journal of Systems &
Software, 1986 [HARR86]

10. A Micro/Macro Measure of Software Complexity; Harrison & Cook; Journal of Systems &
Software, 1987 [HARR87]I

TASC
Ref-12 T W,, k,,S-, T

.0 solomw l i I I I l

THE ANALYTIC SCIENCES CORPORATION

TOOLS, COURSES AND NEWSLETTERS

1. Automated Systems Department (TBE-HSV) S/W Tools

2. TBE Accomplishments & Initiatives in Productivity, Training & Automated JV&V Tools
April 1988

3. IV&V Methodology & Tools Update - Computer Applications Directorate - April 1988

4. Timing & Sizing Simulation Evaluation - DP-Sim & Network 11.5 - Terry Morris - April
1988

5. TBE 1988 BAMD V&V Tools Matrix

6. Logiscope Descriptions

7. McCabe & Associate Tools

8. AT&T Tools for Measuring Software Reliability

9. Dynamics Research Corporation -- AdaMat & Ada Quality Quarterly Newsletter

10. EVB, Software Engineering courses for 1989

11. Ada Information Clearinghouse newsletters

CONFERENCE INFORMATION

1. Proceedings of the Joint Ada Conference - Fifth National Conference on Ada Technology
and Washington Ada Symposium; March 16-19, 1987

2. Agenda, NSIA Software Quality and Productivity; March 10-12, 1987

3. Agenda, 9th Annual Conference on Multiple-Criteria Decision Making; August 1990

4. Agenda; Ada Project Management Course by Don Firesmith; Spring 1989.

PARA

Ref- 13 N S, A TL&M0D&T=T D

